Do you want to publish a course? Click here

Cartography of Natural Language Processing for Social Good (NLP4SG): Searching for Definitions, Statistics and White Spots

رسم الخرائط من معالجة اللغات الطبيعية للخير الاجتماعي (NLP4SG): البحث عن التعريفات والإحصائيات والبقع البيضاء

516   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

The range of works that can be considered as developing NLP for social good (NLP4SG) is enormous. While many of them target the identification of hate speech or fake news, there are others that address, e.g., text simplification to alleviate consequences of dyslexia, or coaching strategies to fight depression. However, so far, there is no clear picture of what areas are targeted by NLP4SG, who are the actors, which are the main scenarios and what are the topics that have been left aside. In order to obtain a clearer view in this respect, we first propose a working definition of NLP4SG and identify some primary aspects that are crucial for NLP4SG, including, e.g., areas, ethics, privacy and bias. Then, we draw upon a corpus of around 50,000 articles downloaded from the ACL Anthology. Based on a list of keywords retrieved from the literature and revised in view of the task, we select from this corpus articles that can be considered to be on NLP4SG according to our definition and analyze them in terms of trends along the time line, etc. The result is a map of the current NLP4SG research and insights concerning the white spots on this map.



References used
https://aclanthology.org/
rate research

Read More

The debate around climate change (CC)---its extent, its causes, and the necessary responses---is intense and of global importance. Yet, in the natural language processing (NLP) community, this domain has so far received little attention. In contrast, it is of enormous prominence in various social science disciplines, and some of that work follows the ''text-as-data'' paradigm, seeking to employ quantitative methods for analyzing large amounts of CC-related text. Other research is qualitative in nature and studies details, nuances, actors, and motivations within CC discourses. Coming from both NLP and Political Science, and reviewing key works in both disciplines, we discuss how social science approaches to CC debates can inform advances in text-mining/NLP, and how, in return, NLP can support policy-makers and activists in making sense of large-scale and complex CC discourses across multiple genres, channels, topics, and communities. This is paramount for their ability to make rapid and meaningful impact on the discourse, and for shaping the necessary policy change.
3683 - MIT press 1999 كتاب
Statistical approaches to processing natural language text have become dominant in recent years. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations.
Natural language processing (NLP) research combines the study of universal principles, through basic science, with applied science targeting specific use cases and settings. However, the process of exchange between basic NLP and applications is often assumed to emerge naturally, resulting in many innovations going unapplied and many important questions left unstudied. We describe a new paradigm of Translational NLP, which aims to structure and facilitate the processes by which basic and applied NLP research inform one another. Translational NLP thus presents a third research paradigm, focused on understanding the challenges posed by application needs and how these challenges can drive innovation in basic science and technology design. We show that many significant advances in NLP research have emerged from the intersection of basic principles with application needs, and present a conceptual framework outlining the stakeholders and key questions in translational research. Our framework provides a roadmap for developing Translational NLP as a dedicated research area, and identifies general translational principles to facilitate exchange between basic and applied research.
We propose Cartography Active Learning (CAL), a novel Active Learning (AL) algorithm that exploits the behavior of the model on individual instances during training as a proxy to find the most informative instances for labeling. CAL is inspired by da ta maps, which were recently proposed to derive insights into dataset quality (Swayamdipta et al., 2020). We compare our method on popular text classification tasks to commonly used AL strategies, which instead rely on post-training behavior. We demonstrate that CAL is competitive to other common AL methods, showing that training dynamics derived from small seed data can be successfully used for AL. We provide insights into our new AL method by analyzing batch-level statistics utilizing the data maps. Our results further show that CAL results in a more data-efficient learning strategy, achieving comparable or better results with considerably less training data.
This paper describes the entry of the research group SINAI at SMM4H's ProfNER task on the identification of professions and occupations in social media related with health. Specifically we have participated in Task 7a: Tweet Binary Classification to determine whether a tweet contains mentions of occupations or not, as well as in Task 7b: NER Offset Detection and Classification aimed at predicting occupations mentions and classify them discriminating by professions and working statuses.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا