النقاش حول تغير المناخ (CC) - - مدى أسبابه، والاستجابات اللازمة - - مكثفة وعدم أهمية عالمية. ومع ذلك، في مجتمع معالجة اللغة الطبيعي (NLP)، استقبل هذا المجال حتى الآن الكثير من الاهتمام. على النقيض من ذلك، فهي بارزة هائلة في مختلف التخصصات العلوم الاجتماعية، وبعض هذا العمل يتبع نموذج "نص البيانات"، والسعي إلى استخدام الأساليب الكمية لتحليل كميات كبيرة من النص المرتبط بمكبر الصوت. البحث الآخر هو نوعية في الطبيعة والدراسات تفاصيل، الفروق الدقيقة والجهات الفاعلة والدوافع داخل خطابات CC. من الناحية القادمة من كل من NLP والعلوم السياسية، ومراجعة الأعمال الرئيسية في كلا التخصصات، نناقش كيف يمكن لنقل العلوم الاجتماعية لمناقشات CC تقديم التقدم في التعدين / NLP، وكيفية، في المقابل، يمكن ل NLP دعم صانعي السياسات والناشطين في من الفائدة من خطابات CC واسعة النطاق ومعقدة عبر الأنواع المختلفة والقنوات والموضوعات والمجتمعات. هذا أمر بالغ الأهمية لقدرته على جعل تأثير سريع وذات مغزى على الخطاب، وتشكيل تغيير السياسة اللازمة.
The debate around climate change (CC)---its extent, its causes, and the necessary responses---is intense and of global importance. Yet, in the natural language processing (NLP) community, this domain has so far received little attention. In contrast, it is of enormous prominence in various social science disciplines, and some of that work follows the ''text-as-data'' paradigm, seeking to employ quantitative methods for analyzing large amounts of CC-related text. Other research is qualitative in nature and studies details, nuances, actors, and motivations within CC discourses. Coming from both NLP and Political Science, and reviewing key works in both disciplines, we discuss how social science approaches to CC debates can inform advances in text-mining/NLP, and how, in return, NLP can support policy-makers and activists in making sense of large-scale and complex CC discourses across multiple genres, channels, topics, and communities. This is paramount for their ability to make rapid and meaningful impact on the discourse, and for shaping the necessary policy change.
References used
https://aclanthology.org/
Statistical approaches to processing natural language text have become dominant in recent years. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations.
Neutralisation techniques, e.g. denial of responsibility and denial of victim, are used in the narrative of climate change scepticism to justify lack of action or to promote an alternative view. We first draw on social science to introduce the proble
Natural Language Processing (NLP) systems are at the heart of many critical automated decision-making systems making crucial recommendations about our future world. Gender bias in NLP has been well studied in English, but has been less studied in oth
Natural language processing (NLP) research combines the study of universal principles, through basic science, with applied science targeting specific use cases and settings. However, the process of exchange between basic NLP and applications is often
This article explores the potential for Natural Language Processing (NLP) to enable a more effective, prevention focused and less confrontational policing model that has hitherto been too resource consuming to implement at scale. Problem-Oriented Pol