Do you want to publish a course? Click here

Extracting Appointment Spans from Medical Conversations

استخراج المواعيد يمتد من المحادثات الطبية

275   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Extracting structured information from medical conversations can reduce the documentation burden for doctors and help patients follow through with their care plan. In this paper, we introduce a novel task of extracting appointment spans from medical conversations. We frame this task as a sequence tagging problem and focus on extracting spans for appointment reason and time. However, annotating medical conversations is expensive, time-consuming, and requires considerable domain expertise. Hence, we propose to leverage weak supervision approaches, namely incomplete supervision, inaccurate supervision, and a hybrid supervision approach and evaluate both generic and domain-specific, ELMo, and BERT embeddings using sequence tagging models. The best performing model is the domain-specific BERT variant using weak hybrid supervision and obtains an F1 score of 79.32.



References used
https://aclanthology.org/
rate research

Read More

In many natural language processing applications, identifying predictive text can be as important as the predictions themselves. When predicting medical diagnoses, for example, identifying predictive content in clinical notes not only enhances interp retability, but also allows unknown, descriptive (i.e., text-based) risk factors to be identified. We here formalize this problem as predictive extraction and address it using a simple mechanism based on linear attention. Our method preserves differentiability, allowing scalable inference via stochastic gradient descent. Further, the model decomposes predictions into a sum of contributions of distinct text spans. Importantly, we require only document labels, not ground-truth spans. Results show that our model identifies semantically-cohesive spans and assigns them scores that agree with human ratings, while preserving classification performance.
Machine learning-based prediction of material properties is often hampered by the lack of sufficiently large training data sets. The majority of such measurement data is embedded in scientific literature and the ability to automatically extract these data is essential to support the development of reliable property prediction methods. In this work, we describe a methodology for developing an automatic property extraction framework using material solubility as the target property. We create a training and evaluation data set containing tags for solubility-related entities using a combination of regular expressions and manual tagging. We then compare five entity recognition models leveraging both token-level and span-level architectures on the task of classifying solute names, solubility values, and solubility units. Additionally, we explore a novel pretraining approach that leverages automated chemical name and quantity extraction tools to generate large datasets that do not rely on intensive manual tagging. Finally, we perform an analysis to identify the causes of classification errors.
The COVID-19 pandemic has spawned a diverse body of scientific literature that is challenging to navigate, stimulating interest in automated tools to help find useful knowledge. We pursue the construction of a knowledge base (KB) of mechanisms---a fu ndamental concept across the sciences, which encompasses activities, functions and causal relations, ranging from cellular processes to economic impacts. We extract this information from the natural language of scientific papers by developing a broad, unified schema that strikes a balance between relevance and breadth. We annotate a dataset of mechanisms with our schema and train a model to extract mechanism relations from papers. Our experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature, outperforming the prominent PubMed search in a study with clinical experts. Our search engine, dataset and code are publicly available.
Automatically extracting interpersonal relationships of conversation interlocutors can enrich personal knowledge bases to enhance personalized search, recommenders and chatbots. To infer speakers' relationships from dialogues we propose PRIDE, a neur al multi-label classifier, based on BERT and Transformer for creating a conversation representation. PRIDE utilizes dialogue structure and augments it with external knowledge about speaker features and conversation style.Unlike prior works, we address multi-label prediction of fine-grained relationships. We release large-scale datasets, based on screenplays of movies and TV shows, with directed relationships of conversation participants. Extensive experiments on both datasets show superior performance of PRIDE compared to the state-of-the-art baselines.
This paper presents a reference study of available algorithms for plagiarism detection and it develops semantic plagiarism detection algorithm for plagiarism detection in medical research papers by employing the Medical Ontologies available on the World Wide Web. The issue of plagiarism detection in medical research written in natural languages is a complex issue and related exact domain of medical research. There are many used algorithms for plagiarism detection in natural language, which are generally divided into two main categories, the first one is comparison algorithms between files by using fingerprints of files, and files content comparison algorithms, which include strings matching algorithms and text and tree matching algorithms. Recently a lot of research in the field of semantic plagiarism detection algorithms and semantic plagiarism detection algorithms were developed basing of citation analysis models in scientific research. In this research a system for plagiarism detection was developed using “Bing” search engine, where tow type of ontologies used in this system, public ontology as wordNet and many standard international ontologies in medical domain as Diseases ontology which contains a descriptions about diseases and definitions of it and the derivation between diseases.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا