Do you want to publish a course? Click here

Learning to Lemmatize in the Word Representation Space

تعلم الليمون في مساحة تمثيل كلمة

255   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Lemmatization is often used with morphologically rich languages to address issues caused by morphological complexity, performed by grammar-based lemmatizers. We propose an alternative for this, in form of a tool that performs lemmatization in the space of word embeddings. Word embeddings as distributed representations natively encode some information about the relationship between base and inflected forms, and we show that it is possible to learn a transformation that approximately maps the embeddings of inflected forms to the embeddings of the corresponding lemmas. This facilitates an alternative processing pipeline that replaces traditional lemmatization with the lemmatizing transformation in downstream processing for any application. We demonstrate the method in the Finnish language, outperforming traditional lemmatizers in example task of document similarity comparison, but the approach is language independent and can be trained for new languages with mild requirements.

References used
https://aclanthology.org/
rate research

Read More

Abstract This study carries out a systematic intrinsic evaluation of the semantic representations learned by state-of-the-art pre-trained multimodal Transformers. These representations are claimed to be task-agnostic and shown to help on many downstr eam language-and-vision tasks. However, the extent to which they align with human semantic intuitions remains unclear. We experiment with various models and obtain static word representations from the contextualized ones they learn. We then evaluate them against the semantic judgments provided by human speakers. In line with previous evidence, we observe a generalized advantage of multimodal representations over language- only ones on concrete word pairs, but not on abstract ones. On the one hand, this confirms the effectiveness of these models to align language and vision, which results in better semantic representations for concepts that are grounded in images. On the other hand, models are shown to follow different representation learning patterns, which sheds some light on how and when they perform multimodal integration.
We introduce a new approach for smoothing and improving the quality of word embeddings. We consider a method of fusing word embeddings that were trained on the same corpus but with different initializations. We project all the models to a shared vect or space using an efficient implementation of the Generalized Procrustes Analysis (GPA) procedure, previously used in multilingual word translation. Our word representation demonstrates consistent improvements over the raw models as well as their simplistic average, on a range of tasks. As the new representations are more stable and reliable, there is a noticeable improvement in rare word evaluations.
This paper introduces a novel approach to learn visually grounded meaning representations of words as low-dimensional node embeddings on an underlying graph hierarchy. The lower level of the hierarchy models modality-specific word representations, co nditioned to another modality, through dedicated but communicating graphs, while the higher level puts these representations together on a single graph to learn a representation jointly from both modalities. The topology of each graph models similarity relations among words, and is estimated jointly with the graph embedding. The assumption underlying this model is that words sharing similar meaning correspond to communities in an underlying graph in a low-dimensional space. We named this model Hierarchical Multi-Modal Similarity Graph Embedding (HM-SGE). Experimental results validate the ability of HM-SGE to simulate human similarity judgments and concept categorization, outperforming the state of the art.
Existing supervised models for text clustering find it difficult to directly optimize for clustering results. This is because clustering is a discrete process and it is difficult to estimate meaningful gradient of any discrete function that can drive gradient based optimization algorithms. So, existing supervised clustering algorithms indirectly optimize for some continuous function that approximates the clustering process. We propose a scalable training strategy that directly optimizes for a discrete clustering metric. We train a BERT-based embedding model using our method and evaluate it on two publicly available datasets. We show that our method outperforms another BERT-based embedding model employing Triplet loss and other unsupervised baselines. This suggests that optimizing directly for the clustering outcome indeed yields better representations suitable for clustering.
How do people understand the meaning of the word small'' when used to describe a mosquito, a church, or a planet? While humans have a remarkable ability to form meanings by combining existing concepts, modeling this process is challenging. This paper addresses that challenge through CEREBRA (Context-dEpendent meaning REpresentations in the BRAin) neural network model. CEREBRA characterizes how word meanings dynamically adapt in the context of a sentence by decomposing sentence fMRI into words and words into embodied brain-based semantic features. It demonstrates that words in different contexts have different representations and the word meaning changes in a way that is meaningful to human subjects. CEREBRA's context-based representations can potentially be used to make NLP applications more human-like.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا