العديد من أدوات استخراج العلاقات الدلالية التلقائي استخراج ثلاث مرات من النص غير منظم.ومع ذلك، فإن كمية كبيرة من هذه الثلاثي هي فقط تمثل المعرفة الأساسية.نستكشف استخدام النصوص الكاملة للمنشورات الطبية الحيوية لإنشاء كائن تدريبي ثلاثي ثلاث مرات دهالية مفيدة ومهمة تستند إلى فكرة أن الاشتراكات الرئيسية للمقال ملخصة في مجردة لها.يتم استخدام هذه الشورقة لتدريب مصنف التعلم العميق لتحديد ثلاثة أضعاف ثلاثة أضعاف، ونقترح أن يتم توليد ترتيب الأهمية الثلاثية الدلالية.
Many automatic semantic relation extraction tools extract subject-predicate-object triples from unstructured text. However, a large quantity of these triples merely represent background knowledge. We explore using full texts of biomedical publications to create a training corpus of informative and important semantic triples based on the notion that the main contributions of an article are summarized in its abstract. This corpus is used to train a deep learning classifier to identify important triples, and we suggest that an importance ranking for semantic triples could also be generated.
References used
https://aclanthology.org/
This research aims to predict the level of air pollution with a set of data used to make predictions through them and to obtain the best prediction using several models and compare them and find the appropriate solution.
Automatically extracting interpersonal relationships of conversation interlocutors can enrich personal knowledge bases to enhance personalized search, recommenders and chatbots. To infer speakers' relationships from dialogues we propose PRIDE, a neur
We present a manually annotated lexical semantic change dataset for Russian: RuShiftEval. Its novelty is ensured by a single set of target words annotated for their diachronic semantic shifts across three time periods, while the previous work either
Transfer learning methods, and in particular domain adaptation, help exploit labeled data in one domain to improve the performance of a certain task in another domain. However, it is still not clear what factors affect the success of domain adaptatio
This study recruited 51 elders aged 53-74 to discuss their daily activities in focus groups. The transcribed discourse was analyzed using the Chinese version of LIWC (Lin et al., 2020; Pennebaker et al., 2015) for cognitive complexity and dynamic lan