وقد مكن التحول إلى النماذج العصبية في إحالة الجيل التعبير (REG) المزيد من النماذج الطبيعية، ولكن بتكلفة الترجمة الترجمة الشفوية.نجاد بأن دمج المنطق العملي في استنتاج نماذج التوليد غير المرجعية للسياق يمكن أن يتجاوز سمات REG التقليدية والعملية، لأن هذا يوفر فصل بين المعلومات المستقلة والمعلومات الحرفية والتكيف العملي إلى السياق.مع وضع ذلك في الاعتبار، نطبق استراتيجيات فك تشفيرها الحالية من التسمية التوضيحية للصورة التمييزية إلى REG وتقييمها من حيث المعلوماتية العملية، والاحتمالية في التعليقات التوضيحية حول الحقيقة والتنوع اللغوي.تظهر نتائجنا فعالية عامة، ولكن مكاسب صغيرة نسبيا في المعلوماتية، مما أثار أسئلة مهمة ل Reg بشكل عام.
The shift to neural models in Referring Expression Generation (REG) has enabled more natural set-ups, but at the cost of interpretability. We argue that integrating pragmatic reasoning into the inference of context-agnostic generation models could reconcile traits of traditional and neural REG, as this offers a separation between context-independent, literal information and pragmatic adaptation to context. With this in mind, we apply existing decoding strategies from discriminative image captioning to REG and evaluate them in terms of pragmatic informativity, likelihood to ground-truth annotations and linguistic diversity. Our results show general effectiveness, but a relatively small gain in informativity, raising important questions for REG in general.
References used
https://aclanthology.org/
The understanding of time expressions includes two sub-tasks: recognition and normalization. In recent years, significant progress has been made in the recognition of time expressions while research on normalization has lagged behind. Existing SOTA n
Conditional text generation often requires lexical constraints, i.e., which words should or shouldn't be included in the output text. While the dominant recipe for conditional text generation has been large-scale pretrained language models that are f
Most current neural machine translation models adopt a monotonic decoding order of either left-to-right or right-to-left. In this work, we propose a novel method that breaks up the limitation of these decoding orders, called Smart-Start decoding. Mor
Diverse machine translation aims at generating various target language translations for a given source language sentence. To leverage the linear relationship in the sentence latent space introduced by the mixup training, we propose a novel method, Mi
Narrative generation is an open-ended NLP task in which a model generates a story given a prompt. The task is similar to neural response generation for chatbots; however, innovations in response generation are often not applied to narrative generatio