الاستشهادات حاسمة خطاب علمي. إلى جانب توفير سياقات إضافية للأوراق البحثية، تعمل الاستشهادات كمسارات لتوجيه الأبحاث في مجال وكي تدبير مهم في فهم تأثير منشور بحثي. مع النمو السريع في المنشورات البحثية، أصبحت الحلول الآلية لتحديد الغرض وتأثير الاستشهادات مهمة للغاية. تعد مهمة تصنيف سياق الاقتباس 3C المنظم كجزء من ورشة العمل الثانية حول معالجة المستندات العلمية @ Naacl 2021 مهمة مشتركة لمعالجة المشكلات المذكورة أعلاه. في هذه الورقة، نقدم فريقنا، تقديم IITP-CUNI @ 3C إلى المهام المشتركة 3C. بالنسبة للمهمة، تصنيف غرض سياق الاقتباس، نقترح إطارا تعليميا متعدد المهام العصبي الذي يسخر بالمعلومات الهيكلية للأوراق البحثية والعلاقة بين سياق الاقتباس والورقة المذكورة لتصنيف الاقتباس. بالنسبة للمهمة ب، تؤثر سياق الاقتباس على التصنيف، نستخدم مجموعة من الميزات البسيطة لتصنيف الاستشهادات بناء على أهميتها المتصورة. نحن نحقق أداء مماثل فيما يتعلق بأفضل أنظمة أداء في المهمة واحذف خط الأساس الأغلبية في المهمة B مع ميزات بسيطة للغاية.
Citations are crucial to a scientific discourse. Besides providing additional contexts to research papers, citations act as trackers of the direction of research in a field and as an important measure in understanding the impact of a research publication. With the rapid growth in research publications, automated solutions for identifying the purpose and influence of citations are becoming very important. The 3C Citation Context Classification Task organized as part of the Second Workshop on Scholarly Document Processing @ NAACL 2021 is a shared task to address the aforementioned problems. In this paper, we present our team, IITP-CUNI@3C's submission to the 3C shared tasks. For Task A, citation context purpose classification, we propose a neural multi-task learning framework that harnesses the structural information of the research papers and the relation between the citation context and the cited paper for citation classification. For Task B, citation context influence classification, we use a set of simple features to classify citations based on their perceived significance. We achieve comparable performance with respect to the best performing systems in Task A and superseded the majority baseline in Task B with very simple features.
References used
https://aclanthology.org/
This paper describes our system (IREL) for 3C-Citation Context Classification shared task of the Scholarly Document Processing Workshop at NAACL 2021. We participated in both subtask A and subtask B. Our best system achieved a Macro F1 score of 0.269
We present our entry into the 2021 3C Shared Task Citation Context Classification based on Purpose competition. The goal of the competition is to classify a citation in a scientific article based on its purpose. This task is important because it coul
This paper provides an overview of the 2021 3C Citation Context Classification shared task. The second edition of the shared task was organised as part of the 2nd Workshop on Scholarly Document Processing (SDP 2021). The task is composed of two subta
We propose the mixed-attention-based Generative Adversarial Network (named maGAN), and apply it for citation intent classification in scientific publication. We select domain-specific training data, propose a mixed-attention mechanism, and employ gen
This paper describes Charles University sub-mission for Terminology translation Shared Task at WMT21. The objective of this task is to design a system which translates certain terms based on a provided terminology database, while preserving high over