تصف هذه الورقة تقديمنا إلى Thesemeval'21: المهمة 7- Hahackathon: الكشف عن الفكاهة والجريمة.في هذا التحدي، نستكشف معدل تكبير متوسطة، وتعزيز الترجمة، والتعلم المتعدد الكثافة، وتمييز نماذج اللغة المختلفة.من الغريب، لا يحسن الثمينة والخلفية المتوسطة الأداء، في حين أن التعلم المتعدد والكمال يحسن الأداء.نستكشف لماذا لا توفر الدفعة المتوسطة والخلفية نفس الفائدة مثل مهام معالجة اللغة الطبيعية الأخرى وتوفر نظرة ثاقبة في الأخطاء التي يصنعها طرازنا.أفضل نظام أداء لدينا يحتل المرتبة السابعة على المهمة 1BWith RMSE من 0.5339
This paper describes our submission to theSemEval'21: Task 7- HaHackathon: Detecting and Rating Humor and Offense. In this challenge, we explore intermediate finetuning, backtranslation augmentation, multitask learning, and ensembling of different language models. Curiously, intermediate finetuning and backtranslation do not improve performance, while multitask learning and ensembling do improve performance. We explore why intermediate finetuning and backtranslation do not provide the same benefit as other natural language processing tasks and offer insight into the errors that our model makes. Our best performing system ranks 7th on Task 1bwith an RMSE of 0.5339
References used
https://aclanthology.org/
SemEval 2021 Task 7, HaHackathon, was the first shared task to combine the previously separate domains of humor detection and offense detection. We collected 10,000 texts from Twitter and the Kaggle Short Jokes dataset, and had each annotated for hum
Humor detection and rating poses interesting linguistic challenges to NLP; it is highly subjective depending on the perceptions of a joke and the context in which it is used. This paper utilizes and compares transformers models; BERT base and Large,
This paper describes our contribution to SemEval-2021 Task 7: Detecting and Rating Humor and Of-fense.This task contains two sub-tasks, sub-task 1and sub-task 2. Among them, sub-task 1 containsthree sub-tasks, sub-task 1a ,sub-task 1b and sub-task 1c
Humor recognition is a challenging task in natural language processing. This document presents my approaches to detect and rate humor and offense from the given text. This task includes 2 tasks: task 1 which contains 3 subtasks (1a, 1b, and 1c), and
With the emerging trends of using online platforms, peoples are increasingly interested in express their opinion through humorous texts. Identifying and rating humorous texts poses unique challenges to NLP due to subjective phenomena i.e. humor may v