Do you want to publish a course? Click here

UoT-UWF-PartAI at SemEval-2021 Task 5: Self Attention Based Bi-GRU with Multi-Embedding Representation for Toxicity Highlighter

UOT-UWF-Partai في مهمة Semeval-2021 5: الانتباه الذاتي القائمة BI-GRU مع تمثيل متعدد التضمين لتسجيل السمية

225   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Toxic Spans Detection(TSD) task is defined as highlighting spans that make a text toxic. Many works have been done to classify a given comment or document as toxic or non-toxic. However, none of those proposed models work at the token level. In this paper, we propose a self-attention-based bidirectional gated recurrent unit(BiGRU) with a multi-embedding representation of the tokens. Our proposed model enriches the representation by a combination of GPT-2, GloVe, and RoBERTa embeddings, which led to promising results. Experimental results show that our proposed approach is very effective in detecting span tokens.



References used
https://aclanthology.org/
rate research

Read More

Recurrent Neural Networks (RNN) have been widely used in various Natural Language Processing (NLP) tasks such as text classification, sequence tagging, and machine translation. Long Short Term Memory (LSTM), a special unit of RNN, has the benefit of memorizing past and even future information in a sentence (especially for bidirectional LSTM). In the shared task of detecting spans which make texts toxic, we first apply pretrained word embedding (GloVe) to generate the word vectors after tokenization. And then we construct Bidirectional Long Short Term Memory-Conditional Random Field (Bi-LSTM-CRF) model by Baidu research to predict whether each word in the sentence is toxic or not. We tune hyperparameters of dropout rate, number of LSTM units, embedding size with 10 epochs and choose the best epoch with validation recall. Our model achieves an F1 score of 66.99 percent in test dataset.
This paper presents our submission to SemEval-2021 Task 5: Toxic Spans Detection. The purpose of this task is to detect the spans that make a text toxic, which is a complex labour for several reasons. Firstly, because of the intrinsic subjectivity of toxicity, and secondly, due to toxicity not always coming from single words like insults or offends, but sometimes from whole expressions formed by words that may not be toxic individually. Following this idea of focusing on both single words and multi-word expressions, we study the impact of using a multi-depth DistilBERT model, which uses embeddings from different layers to estimate the final per-token toxicity. Our quantitative results show that using information from multiple depths boosts the performance of the model. Finally, we also analyze our best model qualitatively.
This paper describes our system participated in Task 7 of SemEval-2021: Detecting and Rating Humor and Offense. The task is designed to detect and score humor and offense which are influenced by subjective factors. In order to obtain semantic informa tion from a large amount of unlabeled data, we applied unsupervised pre-trained language models. By conducting research and experiments, we found that the ERNIE 2.0 and DeBERTa pre-trained models achieved impressive performance in various subtasks. Therefore, we applied the above pre-trained models to fine-tune the downstream neural network. In the process of fine-tuning the model, we adopted multi-task training strategy and ensemble learning method. Based on the above strategy and method, we achieved RMSE of 0.4959 for subtask 1b, and finally won the first place.
With the rapid growth in technology, social media activity has seen a boom across all age groups. It is humanly impossible to check all the tweets, comments and status manually whether they follow proper community guidelines. A lot of toxicity is reg ularly posted on these social media platforms. This research aims to find toxic words in a sentence so that a healthy social community is built across the globe and the users receive censored content with specific warnings and facts. To solve this challenging problem, authors have combined concepts of Linked List for pre-processing and then used the idea of stacked embeddings like BERT Embeddings, Flair Embeddings and Word2Vec on the flairNLP framework to get the desired results. F1 metric was used to evaluate the model. The authors were able to produce a 0.74 F1 score on their test set.
In this paper, we present our contribution in SemEval-2021 Task 1: Lexical Complexity Prediction, where we integrate linguistic, statistical, and semantic properties of the target word and its context as features within a Machine Learning (ML) framew ork for predicting lexical complexity. In particular, we use BERT contextualized word embeddings to represent the semantic meaning of the target word and its context. We participated in the sub-task of predicting the complexity score of single words

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا