Do you want to publish a course? Click here

abcbpc at SemEval-2021 Task 7: ERNIE-based Multi-task Model for Detecting and Rating Humor and Offense

ABCBPC في مهمة Semeval-2021: نموذج متعدد المهام القائمة على إرني للكشف عن الفكاهة والجريمة

294   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes our system participated in Task 7 of SemEval-2021: Detecting and Rating Humor and Offense. The task is designed to detect and score humor and offense which are influenced by subjective factors. In order to obtain semantic information from a large amount of unlabeled data, we applied unsupervised pre-trained language models. By conducting research and experiments, we found that the ERNIE 2.0 and DeBERTa pre-trained models achieved impressive performance in various subtasks. Therefore, we applied the above pre-trained models to fine-tune the downstream neural network. In the process of fine-tuning the model, we adopted multi-task training strategy and ensemble learning method. Based on the above strategy and method, we achieved RMSE of 0.4959 for subtask 1b, and finally won the first place.



References used
https://aclanthology.org/
rate research

Read More

Humor detection has become a topic of interest for several research teams, especially those involved in socio-psychological studies, with the aim to detect the humor and the temper of a targeted population (e.g. a community, a city, a country, the em ployees of a given company). Most of the existing studies have formulated the humor detection problem as a binary classification task, whereas it revolves around learning the sense of humor by evaluating its different degrees. In this paper, we propose an end-to-end deep Multi-Task Learning (MTL) model to detect and rate humor and offense. It consists of a pre-trained transformer encoder and task-specific attention layers. The model is trained using MTL uncertainty loss weighting to adaptively combine all sub-tasks objective functions. Our MTL model tackles all sub-tasks of the SemEval-2021 Task-7 in one end-to-end deep learning system and shows very promising results.
This paper describes our contribution to SemEval-2021 Task 7: Detecting and Rating Humor and Of-fense.This task contains two sub-tasks, sub-task 1and sub-task 2. Among them, sub-task 1 containsthree sub-tasks, sub-task 1a ,sub-task 1b and sub-task 1c .Sub-task 1a is to predict if the text would beconsidered humorous.Sub-task 1c is described asfollows: if the text is classed as humorous, predictif the humor rating would be considered controver-sial, i.e. the variance of the rating between annota-tors is higher than the median.we combined threepre-trained model with CNN to complete these twoclassification sub-tasks.Sub-task 1b is to judge thedegree of humor.Sub-task 2 aims to predict how of-fensive a text would be with values between 0 and5.We use the idea of regression to deal with thesetwo sub-tasks.We analyze the performance of ourmethod and demonstrate the contribution of eachcomponent of our architecture.We have achievedgood results under the combination of multiple pre-training models and optimization methods.
In this paper we describe the systems used by the RoMa team in the shared task on Detecting and Rating Humor and Offense (HaHackathon) at SemEval 2021. Our systems rely on data representations learned through fine-tuned neural language models. Partic ularly, we explore two distinct architectures. The first one is based on a Siamese Neural Network (SNN) combined with a graph-based clustering method. The SNN model is used for learning a latent space where instances of humor and non-humor can be distinguished. The clustering method is applied to build prototypes of both classes which are used for training and classifying new messages. The second one combines neural language model representations with a linear regression model which makes the final ratings. Our systems achieved the best results for humor classification using model one, whereas for offensive and humor rating the second model obtained better performance. In the case of the controversial humor prediction, the most significant improvement was achieved by a fine-tuning of the neural language model. In general, the results achieved are encouraging and give us a starting point for further improvements.
SemEval 2021 Task 7, HaHackathon, was the first shared task to combine the previously separate domains of humor detection and offense detection. We collected 10,000 texts from Twitter and the Kaggle Short Jokes dataset, and had each annotated for hum or and offense by 20 annotators aged 18-70. Our subtasks were binary humor detection, prediction of humor and offense ratings, and a novel controversy task: to predict if the variance in the humor ratings was higher than a specific threshold. The subtasks attracted 36-58 submissions, with most of the participants choosing to use pre-trained language models. Many of the highest performing teams also implemented additional optimization techniques, including task-adaptive training and adversarial training. The results suggest that the participating systems are well suited to humor detection, but that humor controversy is a more challenging task. We discuss which models excel in this task, which auxiliary techniques boost their performance, and analyze the errors which were not captured by the best systems.
This paper describes MagicPai's system for SemEval 2021 Task 7, HaHackathon: Detecting and Rating Humor and Offense. This task aims to detect whether the text is humorous and how humorous it is. There are four subtasks in the competition. In this pap er, we mainly present our solution, a multi-task learning model based on adversarial examples, for task 1a and 1b. More specifically, we first vectorize the cleaned dataset and add the perturbation to obtain more robust embedding representations. We then correct the loss via the confidence level. Finally, we perform interactive joint learning on multiple tasks to capture the relationship between whether the text is humorous and how humorous it is. The final result shows the effectiveness of our system.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا