تصف هذه الورقة أنظمتنا لإلغاء الكشف عن النفي والتعرف على تعبير الوقت في مهمة Semeval 2021، وتكييف المجال المجاني للمصدر للمعالجة الدلالية.نظرا لأن التدريب الذاتي والتعلم النشط وتقنيات تكبير البيانات يمكن أن يحسن قدرة تعميم النموذج على بيانات المجال المستهدف غير المستهدف دون الوصول إلى بيانات مجال المصدر.نحن نقوم أيضا بإجراء دراسات مفصلة عن التدقيق وتحليلات الأخطاء لأنظمة التعرف على تعبير وقتنا لتحديد مصدر تحسين الأداء وإعطاء ردود فعل بناءة على إرشادات التطبيع الزمني للتطبيع.
This paper describes our systems for negation detection and time expression recognition in SemEval 2021 Task 10, Source-Free Domain Adaptation for Semantic Processing. We show that self-training, active learning and data augmentation techniques can improve the generalization ability of the model on the unlabeled target domain data without accessing source domain data. We also perform detailed ablation studies and error analyses for our time expression recognition systems to identify the source of the performance improvement and give constructive feedback on the temporal normalization annotation guidelines.
References used
https://aclanthology.org/
This paper presents the Source-Free Domain Adaptation shared task held within SemEval-2021. The aim of the task was to explore adaptation of machine-learning models in the face of data sharing constraints. Specifically, we consider the scenario where
Source-free domain adaptation is an emerging line of work in deep learning research since it is closely related to the real-world environment. We study the domain adaption in the sequence labeling problem where the model trained on the source domain
Domain adaptation assumes that samples from source and target domains are freely accessible during a training phase. However, such assumption is rarely plausible in the real-world and may causes data-privacy issues, especially when the label of the s
Data sharing restrictions are common in NLP datasets. The purpose of this task is to develop a model trained in a source domain to make predictions for a target domain with related domain data. To address the issue, the organizers provided the models
Due to the increasing concerns for data privacy, source-free unsupervised domain adaptation attracts more and more research attention, where only a trained source model is assumed to be available, while the labeled source data remain private. To get