Do you want to publish a course? Click here

SemEval-2021 Task 10: Source-Free Domain Adaptation for Semantic Processing

SEMEVAL-2021 المهمة 10: تكيف المجال المجاني المصدر للمعالجة الدلالية

404   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents the Source-Free Domain Adaptation shared task held within SemEval-2021. The aim of the task was to explore adaptation of machine-learning models in the face of data sharing constraints. Specifically, we consider the scenario where annotations exist for a domain but cannot be shared. Instead, participants are provided with models trained on that (source) data. Participants also receive some labeled data from a new (development) domain on which to explore domain adaptation algorithms. Participants are then tested on data representing a new (target) domain. We explored this scenario with two different semantic tasks: negation detection (a text classification task) and time expression recognition (a sequence tagging task).



References used
https://aclanthology.org/
rate research

Read More

Data sharing restrictions are common in NLP datasets. The purpose of this task is to develop a model trained in a source domain to make predictions for a target domain with related domain data. To address the issue, the organizers provided the models that fine-tuned a large number of source domain data on pre-trained models and the dev data for participants. But the source domain data was not distributed. This paper describes the provided model to the NER (Name entity recognition) task and the ways to develop the model. As a little data provided, pre-trained models are suitable to solve the cross-domain tasks. The models fine-tuned by large number of another domain could be effective in new domain because the task had no change.
Domain adaptation assumes that samples from source and target domains are freely accessible during a training phase. However, such assumption is rarely plausible in the real-world and may causes data-privacy issues, especially when the label of the s ource domain can be a sensitive attribute as an identifier. SemEval-2021 task 10 focuses on these issues. We participate in the task and propose novel frameworks based on self-training method. In our systems, two different frameworks are designed to solve text classification and sequence labeling. These approaches are tested to be effective which ranks the third among all system in subtask A, and ranks the first among all system in subtask B.
Source-free domain adaptation is an emerging line of work in deep learning research since it is closely related to the real-world environment. We study the domain adaption in the sequence labeling problem where the model trained on the source domain data is given. We propose two methods: Self-Adapter and Selective Classifier Training. Self-Adapter is a training method that uses sentence-level pseudo-labels filtered by the self-entropy threshold to provide supervision to the whole model. Selective Classifier Training uses token-level pseudo-labels and supervises only the classification layer of the model. The proposed methods are evaluated on data provided by SemEval-2021 task 10 and Self-Adapter achieves 2nd rank performance.
This paper describes our systems for negation detection and time expression recognition in SemEval 2021 Task 10, Source-Free Domain Adaptation for Semantic Processing. We show that self-training, active learning and data augmentation techniques can i mprove the generalization ability of the model on the unlabeled target domain data without accessing source domain data. We also perform detailed ablation studies and error analyses for our time expression recognition systems to identify the source of the performance improvement and give constructive feedback on the temporal normalization annotation guidelines.
Due to the increasing concerns for data privacy, source-free unsupervised domain adaptation attracts more and more research attention, where only a trained source model is assumed to be available, while the labeled source data remain private. To get promising adaptation results, we need to find effective ways to transfer knowledge learned in source domain and leverage useful domain specific information from target domain at the same time. This paper describes our winning contribution to SemEval 2021 Task 10: Source-Free Domain Adaptation for Semantic Processing. Our key idea is to leverage the model trained on source domain data to generate pseudo labels for target domain samples. Besides, we propose Negation-aware Pre-training (NAP) to incorporate negation knowledge into model. Our method win the 1st place with F1-score of 0.822 on the official blind test set of Negation Detection Track.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا