تقدم هذه الورقة المهمة المشتركة تتكيف المجال المجانية للمصدر التي عقدت داخل Semeval-2021.كان الهدف من المهمة هو استكشاف تكيف نماذج تعليم الآلات في مواجهة قيود مشاركة البيانات.على وجه التحديد، نعتبر السيناريو حيث توجد التعليقات التوضيحية للنطاق ولكن لا يمكن تقاسمها.بدلا من ذلك، يتم تزويد المشاركين مع النماذج المدربة على هذه البيانات (المصدر).يتلقى المشاركون أيضا بعض البيانات المسمى من مجال جديد (تطوير) لاستكشاف خوارزميات تكيف المجال.ثم يتم اختبار المشاركين على البيانات التي تمثل مجال جديد (الهدف).استكشفنا هذا السيناريو مع اثنين من المهام الدلالية المختلفة: الكشف عن النفي (مهمة تصنيف النص) والتعرف على تعبير الوقت (مهمة وضع علامة تسلسل).
This paper presents the Source-Free Domain Adaptation shared task held within SemEval-2021. The aim of the task was to explore adaptation of machine-learning models in the face of data sharing constraints. Specifically, we consider the scenario where annotations exist for a domain but cannot be shared. Instead, participants are provided with models trained on that (source) data. Participants also receive some labeled data from a new (development) domain on which to explore domain adaptation algorithms. Participants are then tested on data representing a new (target) domain. We explored this scenario with two different semantic tasks: negation detection (a text classification task) and time expression recognition (a sequence tagging task).
References used
https://aclanthology.org/
Data sharing restrictions are common in NLP datasets. The purpose of this task is to develop a model trained in a source domain to make predictions for a target domain with related domain data. To address the issue, the organizers provided the models
Domain adaptation assumes that samples from source and target domains are freely accessible during a training phase. However, such assumption is rarely plausible in the real-world and may causes data-privacy issues, especially when the label of the s
Source-free domain adaptation is an emerging line of work in deep learning research since it is closely related to the real-world environment. We study the domain adaption in the sequence labeling problem where the model trained on the source domain
This paper describes our systems for negation detection and time expression recognition in SemEval 2021 Task 10, Source-Free Domain Adaptation for Semantic Processing. We show that self-training, active learning and data augmentation techniques can i
Due to the increasing concerns for data privacy, source-free unsupervised domain adaptation attracts more and more research attention, where only a trained source model is assumed to be available, while the labeled source data remain private. To get