Do you want to publish a course? Click here

WVOQ at SemEval-2021 Task 6: BART for Span Detection and Classification

WVOQ في مهمة Semeval-2021 6: بارت لكشف وتصنيف

448   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Simultaneous span detection and classification is a task not currently addressed in standard NLP frameworks. The present paper describes why and how an EncoderDecoder model was used to combine span detection and classification to address subtask 2 of SemEval-2021 Task 6.



References used
https://aclanthology.org/
rate research

Read More

The objective of subtask 2 of SemEval-2021 Task 6 is to identify techniques used together with the span(s) of text covered by each technique. This paper describes the system and model we developed for the task. We first propose a pipeline system to i dentify spans, then to classify the technique in the input sequence. But it severely suffers from handling the overlapping in nested span. Then we propose to formulize the task as a question answering task by MRC framework which achieves a better result compared to the pipeline method. Moreover, data augmentation and loss design techniques are also explored to alleviate the problem of data sparse and imbalance. Finally, we attain the 3rd place in the final evaluation phase.
This paper describes our system participated in Task 6 of SemEval-2021: the task focuses on multimodal propaganda technique classification and it aims to classify given image and text into 22 classes. In this paper, we propose to use transformer base d architecture to fuse the clues from both image and text. We explore two branches of techniques including fine-tuning the text pretrained transformer with extended visual features, and fine-tuning the multimodal pretrained transformers. For the visual features, we have tested both grid features based on ResNet and salient region features from pretrained object detector. Among the pretrained multimodal transformers, we choose ERNIE-ViL, a two-steam cross-attended transformers pretrained on large scale image-caption aligned data. Fine-tuing ERNIE-ViL for our task produce a better performance due to general joint multimodal representation for text and image learned by ERNIE-ViL. Besides, as the distribution of the classification labels is very unbalanced, we also make a further attempt on the loss function and the experiment result shows that focal loss would perform better than cross entropy loss. Last we have won first for subtask C in the final competition.
Among the tasks motivated by the proliferation of misinformation, propaganda detection is particularly challenging due to the deficit of fine-grained manual annotations required to train machine learning models. Here we show how data from other relat ed tasks, including credibility assessment, can be leveraged in multi-task learning (MTL) framework to accelerate the training process. To that end, we design a BERT-based model with multiple output layers, train it in several MTL scenarios and perform evaluation against the SemEval gold standard.
This paper describes the system used by the AIMH Team to approach the SemEval Task 6. We propose an approach that relies on an architecture based on the transformer model to process multimodal content (text and images) in memes. Our architecture, cal led DVTT (Double Visual Textual Transformer), approaches Subtasks 1 and 3 of Task 6 as multi-label classification problems, where the text and/or images of the meme are processed, and the probabilities of the presence of each possible persuasion technique are returned as a result. DVTT uses two complete networks of transformers that work on text and images that are mutually conditioned. One of the two modalities acts as the main one and the second one intervenes to enrich the first one, thus obtaining two distinct ways of operation. The two transformers outputs are merged by averaging the inferred probabilities for each possible label, and the overall network is trained end-to-end with a binary cross-entropy loss.
This paper describes and examines different systems to address Task 6 of SemEval-2021: Detection of Persuasion Techniques In Texts And Images, Subtask 1. The task aims to build a model for identifying rhetorical and psycho- logical techniques (such a s causal oversimplification, name-calling, smear) in the textual content of a meme which is often used in a disinformation campaign to influence the users. The paper provides an extensive comparison among various machine learning systems as a solution to the task. We elaborate on the pre-processing of the text data in favor of the task and present ways to overcome the class imbalance. The results show that fine-tuning a RoBERTa model gave the best results with an F1-Micro score of 0.51 on the development set.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا