Do you want to publish a course? Click here

Schema-Guided Paradigm for Zero-Shot Dialog

النموذج الموجه المخطط لحوار الصفر بالرصاص

182   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Developing mechanisms that flexibly adapt dialog systems to unseen tasks and domains is a major challenge in dialog research. Neural models implicitly memorize task-specific dialog policies from the training data. We posit that this implicit memorization has precluded zero-shot transfer learning. To this end, we leverage the schema-guided paradigm, wherein the task-specific dialog policy is explicitly provided to the model. We introduce the Schema Attention Model (SAM) and improved schema representations for the STAR corpus. SAM obtains significant improvement in zero-shot settings, with a +22 F1 score improvement over prior work. These results validate the feasibility of zero-shot generalizability in dialog. Ablation experiments are also presented to demonstrate the efficacy of SAM.

References used
https://aclanthology.org/
rate research

Read More

Natural Language Generation (NLG) for task-oriented dialogue systems focuses on communicating specific content accurately, fluently, and coherently. While these attributes are crucial for a successful dialogue, it is also desirable to simultaneously accomplish specific stylistic goals, such as response length, point-of-view, descriptiveness, sentiment, formality, and empathy. In this work, we focus on stylistic control and evaluation for schema-guided NLG, with joint goals of achieving both semantic and stylistic control. We experiment in detail with various controlled generation methods for large pretrained language models: specifically, conditional training, guided fine-tuning, and guided decoding. We discuss their advantages and limitations, and evaluate them with a broad range of automatic and human evaluation metrics. Our results show that while high style accuracy and semantic correctness are easier to achieve for more lexically-defined styles with conditional training, stylistic control is also achievable for more semantically complex styles using discriminator-based guided decoding methods. The results also suggest that methods that are more scalable (with less hyper-parameters tuning) and that disentangle context generation and stylistic variations are more effective at achieving semantic correctness and style accuracy.
Pretrained transformer-based encoders such as BERT have been demonstrated to achieve state-of-the-art performance on numerous NLP tasks. Despite their success, BERT style encoders are large in size and have high latency during inference (especially o n CPU machines) which make them unappealing for many online applications. Recently introduced compression and distillation methods have provided effective ways to alleviate this shortcoming. However, the focus of these works has been mainly on monolingual encoders. Motivated by recent successes in zero-shot cross-lingual transfer learning using multilingual pretrained encoders such as mBERT, we evaluate the effectiveness of Knowledge Distillation (KD) both during pretraining stage and during fine-tuning stage on multilingual BERT models. We demonstrate that in contradiction to the previous observation in the case of monolingual distillation, in multilingual settings, distillation during pretraining is more effective than distillation during fine-tuning for zero-shot transfer learning. Moreover, we observe that distillation during fine-tuning may hurt zero-shot cross-lingual performance. Finally, we demonstrate that distilling a larger model (BERT Large) results in the strongest distilled model that performs best both on the source language as well as target languages in zero-shot settings.
Humans can distinguish new categories very efficiently with few examples, largely due to the fact that human beings can leverage knowledge obtained from relevant tasks. However, deep learning based text classification model tends to struggle to achie ve satisfactory performance when labeled data are scarce. Inspired by human intelligence, we propose to introduce external knowledge into few-shot learning to imitate human knowledge. A novel parameter generator network is investigated to this end, which is able to use the external knowledge to generate different metrics for different tasks. Armed with this network, similar tasks can use similar metrics while different tasks use different metrics. Through experiments, we demonstrate that our method outperforms the SoTA few-shot text classification models.
Zero-shot cross-domain dialogue state tracking (DST) enables us to handle unseen domains without the expense of collecting in-domain data. In this paper, we propose a slot descriptions enhanced generative approach for zero-shot cross-domain DST. Spec ifically, our model first encodes a dialogue context and a slot with a pre-trained self-attentive encoder, and generates slot value in auto-regressive manner. In addition, we incorporate Slot Type Informed Descriptions that capture the shared information of different slots to facilitates the cross-domain knowledge transfer. Experimental results on MultiWOZ shows that our model significantly improve existing state-of-the-art results in zero-shot cross-domain setting.
Coupled with the availability of large scale datasets, deep learning architectures have enabled rapid progress on the Question Answering task. However, most of those datasets are in English, and the performances of state-of-the-art multilingual model s are significantly lower when evaluated on non-English data. Due to high data collection costs, it is not realistic to obtain annotated data for each language one desires to support. We propose a method to improve the Cross-lingual Question Answering performance without requiring additional annotated data, leveraging Question Generation models to produce synthetic samples in a cross-lingual fashion. We show that the proposed method allows to significantly outperform the baselines trained on English data only. We report a new state-of-the-art on four datasets: MLQA, XQuAD, SQuAD-it and PIAF (fr).

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا