Do you want to publish a course? Click here

Understanding and predicting user dissatisfaction in a neural generative chatbot

فهم وتنبؤ استياء المستخدم في chatbot اللثة العصبي

271   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Neural generative dialogue agents have shown an increasing ability to hold short chitchat conversations, when evaluated by crowdworkers in controlled settings. However, their performance in real-life deployment -- talking to intrinsically-motivated users in noisy environments -- is less well-explored. In this paper, we perform a detailed case study of a neural generative model deployed as part of Chirpy Cardinal, an Alexa Prize socialbot. We find that unclear user utterances are a major source of generative errors such as ignoring, hallucination, unclearness and repetition. However, even in unambiguous contexts the model frequently makes reasoning errors. Though users express dissatisfaction in correlation with these errors, certain dissatisfaction types (such as offensiveness and privacy objections) depend on additional factors -- such as the user's personal attitudes, and prior unaddressed dissatisfaction in the conversation. Finally, we show that dissatisfied user utterances can be used as a semi-supervised learning signal to improve the dialogue system. We train a model to predict next-turn dissatisfaction, and show through human evaluation that as a ranking function, it selects higher-quality neural-generated utterances.



References used
https://aclanthology.org/
rate research

Read More

Many existing chatbots do not effectively support mixed initiative, forcing their users to either respond passively or lead constantly. We seek to improve this experience by introducing new mechanisms to encourage user initiative in social chatbot co nversations. Since user initiative in this setting is distinct from initiative in human-human or task-oriented dialogue, we first propose a new definition that accounts for the unique behaviors users take in this context. Drawing from linguistics, we propose three mechanisms to promote user initiative: back-channeling, personal disclosure, and replacing questions with statements. We show that simple automatic metrics of utterance length, number of noun phrases, and diversity of user responses correlate with human judgement of initiative. Finally, we use these metrics to suggest that these strategies do result in statistically significant increases in user initiative, where frequent, but not excessive, back-channeling is the most effective strategy.
Sensitivity of deep-neural models to input noise is known to be a challenging problem. In NLP, model performance often deteriorates with naturally occurring noise, such as spelling errors. To mitigate this issue, models may leverage artificially nois ed data. However, the amount and type of generated noise has so far been determined arbitrarily. We therefore propose to model the errors statistically from grammatical-error-correction corpora. We present a thorough evaluation of several state-of-the-art NLP systems' robustness in multiple languages, with tasks including morpho-syntactic analysis, named entity recognition, neural machine translation, a subset of the GLUE benchmark and reading comprehension. We also compare two approaches to address the performance drop: a) training the NLP models with noised data generated by our framework; and b) reducing the input noise with external system for natural language correction. The code is released at https://github.com/ufal/kazitext.
As hate speech spreads on social media and online communities, research continues to work on its automatic detection. Recently, recognition performance has been increasing thanks to advances in deep learning and the integration of user features. This work investigates the effects that such features can have on a detection model. Unlike previous research, we show that simple performance comparison does not expose the full impact of including contextual- and user information. By leveraging explainability techniques, we show (1) that user features play a role in the model's decision and (2) how they affect the feature space learned by the model. Besides revealing that---and also illustrating why---user features are the reason for performance gains, we show how such techniques can be combined to better understand the model and to detect unintended bias.
Most chatbot literature that focuses on improving the fluency and coherence of a chatbot, is dedicated to making chatbots more human-like. However, very little work delves into what really separates humans from chatbots -- humans intrinsically unders tand the effect their responses have on the interlocutor and often respond with an intention such as proposing an optimistic view to make the interlocutor feel better. This paper proposes an innovative framework to train chatbots to possess human-like intentions. Our framework includes a guiding chatbot and an interlocutor model that plays the role of humans. The guiding chatbot is assigned an intention and learns to induce the interlocutor to reply with responses matching the intention, for example, long responses, joyful responses, responses with specific words, etc. We examined our framework using three experimental setups and evaluated the guiding chatbot with four different metrics to demonstrate flexibility and performance advantages. Additionally, we performed trials with human interlocutors to substantiate the guiding chatbot's effectiveness in influencing the responses of humans to a certain extent. Code will be made available to the public.
Natural Language Understanding (NLU) is an established component within a conversational AI or digital assistant system, and it is responsible for producing semantic understanding of a user request. We propose a scalable and automatic approach for im proving NLU in a large-scale conversational AI system by leveraging implicit user feedback, with an insight that user interaction data and dialog context have rich information embedded from which user satisfaction and intention can be inferred. In particular, we propose a domain-agnostic framework for curating new supervision data for improving NLU from live production traffic. With an extensive set of experiments, we show the results of applying the framework and improving NLU for a large-scale production system across 10 domains.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا