Do you want to publish a course? Click here

BERT based Adverse Drug Effect Tweet Classification

بيرت القائم على تأثير المخدرات سلبي تصنيف تغريد

268   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes models developed for the Social Media Mining for Health (SMM4H) 2021 shared tasks. Our team participated in the first subtask that classifies tweets with Adverse Drug Effect (ADE) mentions. Our best performing model utilizes BERTweet followed by a single layer of BiLSTM. The system achieves an F-score of 0.45 on the test set without the use of any auxiliary resources such as Part-of-Speech tags, dependency tags, or knowledge from medical dictionaries.



References used
https://aclanthology.org/
rate research

Read More

The paper researches the problem of drug adverse effect detection in texts of social media. We describe the development of such classification system for Russian tweets. To increase the train dataset we apply a couple of augmentation techniques and analyze their effect in comparison with similar systems presented at 2021 years' SMM4H Workshop.
Bidirectional Encoder Representations from Transformers (BERT) has achieved state-of-the-art performances on several text classification tasks, such as GLUE and sentiment analysis. Recent work in the legal domain started to use BERT on tasks, such as legal judgement prediction and violation prediction. A common practise in using BERT is to fine-tune a pre-trained model on a target task and truncate the input texts to the size of the BERT input (e.g. at most 512 tokens). However, due to the unique characteristics of legal documents, it is not clear how to effectively adapt BERT in the legal domain. In this work, we investigate how to deal with long documents, and how is the importance of pre-training on documents from the same domain as the target task. We conduct experiments on the two recent datasets: ECHR Violation Dataset and the Overruling Task Dataset, which are multi-label and binary classification tasks, respectively. Importantly, on average the number of tokens in a document from the ECHR Violation Dataset is more than 1,600. While the documents in the Overruling Task Dataset are shorter (the maximum number of tokens is 204). We thoroughly compare several techniques for adapting BERT on long documents and compare different models pre-trained on the legal and other domains. Our experimental results show that we need to explicitly adapt BERT to handle long documents, as the truncation leads to less effective performance. We also found that pre-training on the documents that are similar to the target task would result in more effective performance on several scenario.
Transformer-based neural networks offer very good classification performance across a wide range of domains, but do not provide explanations of their predictions. While several explanation methods, including SHAP, address the problem of interpreting deep learning models, they are not adapted to operate on state-of-the-art transformer-based neural networks such as BERT. Another shortcoming of these methods is that their visualization of explanations in the form of lists of most relevant words does not take into account the sequential and structurally dependent nature of text. This paper proposes the TransSHAP method that adapts SHAP to transformer models including BERT-based text classifiers. It advances SHAP visualizations by showing explanations in a sequential manner, assessed by human evaluators as competitive to state-of-the-art solutions.
Adverse Drug Event (ADE) extraction models can rapidly examine large collections of social media texts, detecting mentions of drug-related adverse reactions and trigger medical investigations. However, despite the recent advances in NLP, it is curren tly unknown if such models are robust in face of negation, which is pervasive across language varieties. In this paper we evaluate three state-of-the-art systems, showing their fragility against negation, and then we introduce two possible strategies to increase the robustness of these models: a pipeline approach, relying on a specific component for negation detection; an augmentation of an ADE extraction dataset to artificially create negated samples and further train the models. We show that both strategies bring significant increases in performance, lowering the number of spurious entities predicted by the models. Our dataset and code will be publicly released to encourage research on the topic.
This paper studies continual learning (CL) of a sequence of aspect sentiment classification (ASC) tasks. Although some CL techniques have been proposed for document sentiment classification, we are not aware of any CL work on ASC. A CL system that in crementally learns a sequence of ASC tasks should address the following two issues: (1) transfer knowledge learned from previous tasks to the new task to help it learn a better model, and (2) maintain the performance of the models for previous tasks so that they are not forgotten. This paper proposes a novel capsule network based model called B-CL to address these issues. B-CL markedly improves the ASC performance on both the new task and the old tasks via forward and backward knowledge transfer. The effectiveness of B-CL is demonstrated through extensive experiments.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا