Do you want to publish a course? Click here

Synthetic Data Generation and Multi-Task Learning for Extracting Temporal Information from Health-Related Narrative Text

توليد البيانات الاصطناعية والتعلم المتعدد المهام لاستخراج المعلومات الزمنية من النص السردي المرتبط بالصحة

244   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Extracting temporal information is critical to process health-related text. Temporal information extraction is a challenging task for language models because it requires processing both texts and numbers. Moreover, the fundamental challenge is how to obtain a large-scale training dataset. To address this, we propose a synthetic data generation algorithm. Also, we propose a novel multi-task temporal information extraction model and investigate whether multi-task learning can contribute to performance improvement by exploiting additional training signals with the existing training data. For experiments, we collected a custom dataset containing unstructured texts with temporal information of sleep-related activities. Experimental results show that utilising synthetic data can improve the performance when the augmentation factor is 3. The results also show that when multi-task learning is used with an appropriate amount of synthetic data, the performance can significantly improve from 82. to 88.6 and from 83.9 to 91.9 regarding micro-and macro-average exact match scores of normalised time prediction, respectively.

References used
https://aclanthology.org/

rate research

Read More

ProfNER-ST focuses on the recognition of professions and occupations from Twitter using Spanish data. Our participation is based on a combination of word-level embeddings, including pre-trained Spanish BERT, as well as cosine similarity computed over a subset of entities that serve as input for an encoder-decoder architecture with attention mechanism. Finally, our best score achieved an F1-measure of 0.823 in the official test set.
Abstract Recent approaches to data-to-text generation have adopted the very successful encoder-decoder architecture or variants thereof. These models generate text that is fluent (but often imprecise) and perform quite poorly at selecting appropriate content and ordering it coherently. To overcome some of these issues, we propose a neural model with a macro planning stage followed by a generation stage reminiscent of traditional methods which embrace separate modules for planning and surface realization. Macro plans represent high level organization of important content such as entities, events, and their interactions; they are learned from data and given as input to the generator. Extensive experiments on two data-to-text benchmarks (RotoWire and MLB) show that our approach outperforms competitive baselines in terms of automatic and human evaluation.
One of the challenges in information retrieval (IR) is the vocabulary mismatch problem, which happens when the terms between queries and documents are lexically different but semantically similar. While recent work has proposed to expand the queries or documents by enriching their representations with additional relevant terms to address this challenge, they usually require a large volume of query-document pairs to train an expansion model. In this paper, we propose an Unsupervised Document Expansion with Generation (UDEG) framework with a pre-trained language model, which generates diverse supplementary sentences for the original document without using labels on query-document pairs for training. For generating sentences, we further stochastically perturb their embeddings to generate more diverse sentences for document expansion. We validate our framework on two standard IR benchmark datasets. The results show that our framework significantly outperforms relevant expansion baselines for IR.
We propose to tackle data-to-text generation tasks by directly splicing together retrieved segments of text from neighbor'' source-target pairs. Unlike recent work that conditions on retrieved neighbors but generates text token-by-token, left-to-righ t, we learn a policy that directly manipulates segments of neighbor text, by inserting or replacing them in partially constructed generations. Standard techniques for training such a policy require an oracle derivation for each generation, and we prove that finding the shortest such derivation can be reduced to parsing under a particular weighted context-free grammar. We find that policies learned in this way perform on par with strong baselines in terms of automatic and human evaluation, but allow for more interpretable and controllable generation.
Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, w e propose a novel Plan-then-Generate (PlanGen) framework to improve the controllability of neural data-to-text models. Extensive experiments and analyses are conducted on two benchmark datasets, ToTTo and WebNLG. The results show that our model is able to control both the intra-sentence and inter-sentence structure of the generated output. Furthermore, empirical comparisons against previous state-of-the-art methods show that our model improves the generation quality as well as the output diversity as judged by human and automatic evaluations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا