Do you want to publish a course? Click here

BioCopy: A Plug-And-Play Span Copy Mechanism in Seq2Seq Models

Biocopy: آلية نسخ SPAN المكونة والتشغيل في نماذج SEQ2SEQ

245   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Copy mechanisms explicitly obtain unchanged tokens from the source (input) sequence to generate the target (output) sequence under the neural seq2seq framework. However, most of the existing copy mechanisms only consider single word copying from the source sentences, which results in losing essential tokens while copying long spans. In this work, we propose a plug-and-play architecture, namely BioCopy, to alleviate the problem aforementioned. Specifically, in the training stage, we construct a BIO tag for each token and train the original model with BIO tags jointly. In the inference stage, the model will firstly predict the BIO tag at each time step, then conduct different mask strategies based on the predicted BIO label to diminish the scope of the probability distributions over the vocabulary list. Experimental results on two separate generative tasks show that they all outperform the baseline models by adding our BioCopy to the original model structure.



References used
https://aclanthology.org/
rate research

Read More

Large pre-trained language models have repeatedly shown their ability to produce fluent text. Yet even when starting from a prompt, generation can continue in many plausible directions. Current decoding methods with the goal of controlling generation , e.g., to ensure specific words are included, either require additional models or fine-tuning, or work poorly when the task at hand is semantically unconstrained, e.g., story generation. In this work, we present a plug-and-play decoding method for controlled language generation that is so simple and intuitive, it can be described in a single sentence: given a topic or keyword, we add a shift to the probability distribution over our vocabulary towards semantically similar words. We show how annealing this distribution can be used to impose hard constraints on language generation, something no other plug-and-play method is currently able to do with SOTA language generators. Despite the simplicity of this approach, we see it works incredibly well in practice: decoding from GPT-2 leads to diverse and fluent sentences while guaranteeing the appearance of given guide words. We perform two user studies, revealing that (1) our method outperforms competing methods in human evaluations; and (2) forcing the guide words to appear in the generated text has no impact on the fluency of the generated text.
Encoder-decoder models have been commonly used for many tasks such as machine translation and response generation. As previous research reported, these models suffer from generating redundant repetition. In this research, we propose a new mechanism f or encoder-decoder models that estimates the semantic difference of a source sentence before and after being fed into the encoder-decoder model to capture the consistency between two sides. This mechanism helps reduce repeatedly generated tokens for a variety of tasks. Evaluation results on publicly available machine translation and response generation datasets demonstrate the effectiveness of our proposal.
Seq2seq models have demonstrated their incredible effectiveness in a large variety of applications. However, recent research has shown that inappropriate language in training samples and well-designed testing cases can induce seq2seq models to output profanity. These outputs may potentially hurt the usability of seq2seq models and make the end-users feel offended. To address this problem, we propose a training framework with certified robustness to eliminate the causes that trigger the generation of profanity. The proposed training framework leverages merely a short list of profanity examples to prevent seq2seq models from generating a broader spectrum of profanity. The framework is composed of a pattern-eliminating training component to suppress the impact of language patterns with profanity in the training set, and a trigger-resisting training component to provide certified robustness for seq2seq models against intentionally injected profanity-triggering expressions in test samples. In the experiments, we consider two representative NLP tasks that seq2seq can be applied to, i.e., style transfer and dialogue generation. Extensive experimental results show that the proposed training framework can successfully prevent the NLP models from generating profanity.
Toxicity is pervasive in social media and poses a major threat to the health of online communities. The recent introduction of pre-trained language models, which have achieved state-of-the-art results in many NLP tasks, has transformed the way in whi ch we approach natural language processing. However, the inherent nature of pre-training means that they are unlikely to capture task-specific statistical information or learn domain-specific knowledge. Additionally, most implementations of these models typically do not employ conditional random fields, a method for simultaneous token classification. We show that these modifications can improve model performance on the Toxic Spans Detection task at SemEval-2021 to achieve a score within 4 percentage points of the top performing team.
Current sequence-to-sequence models are trained to minimize cross-entropy and use softmax to compute the locally normalized probabilities over target sequences. While this setup has led to strong results in a variety of tasks, one unsatisfying aspect is its length bias: models give high scores to short, inadequate hypotheses and often make the empty string the argmax---the so-called cat got your tongue problem. Recently proposed entmax-based sparse sequence-to-sequence models present a possible solution, since they can shrink the search space by assigning zero probability to bad hypotheses, but their ability to handle word-level tasks with transformers has never been tested. In this work, we show that entmax-based models effectively solve the cat got your tongue problem, removing a major source of model error for neural machine translation. In addition, we generalize label smoothing, a critical regularization technique, to the broader family of Fenchel-Young losses, which includes both cross-entropy and the entmax losses. Our resulting label-smoothed entmax loss models set a new state of the art on multilingual grapheme-to-phoneme conversion and deliver improvements and better calibration properties on cross-lingual morphological inflection and machine translation for 7 language pairs.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا