تصحيح الأخطاء المجردة نموذج تعلم الجهاز أمر صعب للغاية حيث يشمل الخطأ عادة بيانات التدريب وعملية التعلم.يصبح هذا أكثر صعوبة بالنسبة لطراز التعلم العميق غير المشفح إذا لم يكن لدينا أدنى فكرة عن كيفية عمل النموذج بالفعل.في هذا الاستطلاع، نراجع الأوراق التي تستغلها تفسيرات لتمكين البشر من تقديم ملاحظات وتصحيح نماذج NLP.نسمي هذه المشكلة تصحيح الأخطاء البشرية القائم على التفسير (EBHD).على وجه الخصوص، نقوم بتصنيف وناقش العمل الحالي على طول ثلاثة أبعاد من EBHD (سياق الأخطاء، وسير العمل، والإعداد التجريبي)، تجميع النتائج حول كيفية تأثير مكونات EBHD على مقدمي التعليقات، وتسليط الضوء على المشاكل المفتوحة التي يمكن أن تكون اتجاهات بحثية في المستقبل.
Abstract Debugging a machine learning model is hard since the bug usually involves the training data and the learning process. This becomes even harder for an opaque deep learning model if we have no clue about how the model actually works. In this survey, we review papers that exploit explanations to enable humans to give feedback and debug NLP models. We call this problem explanation-based human debugging (EBHD). In particular, we categorize and discuss existing work along three dimensions of EBHD (the bug context, the workflow, and the experimental setting), compile findings on how EBHD components affect the feedback providers, and highlight open problems that could be future research directions.
References used
https://aclanthology.org/
Biases and artifacts in training data can cause unwelcome behavior in text classifiers (such as shallow pattern matching), leading to lack of generalizability. One solution to this problem is to include users in the loop and leverage their feedback t
NLP systems rarely give special consideration to numbers found in text. This starkly contrasts with the consensus in neuroscience that, in the brain, numbers are represented differently from words. We arrange recent NLP work on numeracy into a compre
Adversarial training, a method for learning robust deep neural networks, constructs adversarial examples during training. However, recent methods for generating NLP adversarial examples involve combinatorial search and expensive sentence encoders for
Modern Natural Language Processing (NLP) makes intensive use of deep learning methods because of the accuracy they offer for a variety of applications. Due to the significant environmental impact of deep learning, cost-benefit analysis including carb
Deep neural networks have constantly pushed the state-of-the-art performance in natural language processing and are considered as the de-facto modeling approach in solving complex NLP tasks such as machine translation, summarization and question-answ