مجردة نحن ندرس التعلم المستمر لتوليد تعليم اللغة الطبيعي، من خلال مراقبة تنفيذ تعليمات المستخدمين البشري.نحن نركز على سيناريو تعاوني، حيث يقوم النظام على كلا من كل من المهام التي يقوم بها المستخدمون البشريون الذين يستخدمون اللغة الطبيعية.نقارن تنفيذ المستخدم للحصول على التعليمات التي تم إنشاؤها إلى النظام الأصلي نية كإشارة إلى نجاح النظام في توصيل نيتها.نوضح كيفية استخدام هذه الإشارة لتحسين قدرة النظام على إنشاء تعليمات عبر تعلم الشرط السياقي.في التفاعل مع المستخدمين الحقيقيين، يوضح نظامنا تحسينات دراماتيكية في قدرتها على توليد اللغة بمرور الوقت.
Abstract We study continual learning for natural language instruction generation, by observing human users' instruction execution. We focus on a collaborative scenario, where the system both acts and delegates tasks to human users using natural language. We compare user execution of generated instructions to the original system intent as an indication to the system's success communicating its intent. We show how to use this signal to improve the system's ability to generate instructions via contextual bandit learning. In interaction with real users, our system demonstrates dramatic improvements in its ability to generate language over time.
References used
https://aclanthology.org/
Neural machine translation (NMT) models are data-driven and require large-scale training corpus. In practical applications, NMT models are usually trained on a general domain corpus and then fine-tuned by continuing training on the in-domain corpus.
Continual learning in task-oriented dialogue systems allows the system to add new domains and functionalities overtime after deployment, without incurring the high cost of retraining the whole system each time. In this paper, we propose a first-ever
We propose a straightforward vocabulary adaptation scheme to extend the language capacity of multilingual machine translation models, paving the way towards efficient continual learning for multilingual machine translation. Our approach is suitable f
Curriculum learning, a machine training strategy that feeds training instances to the model from easy to hard, has been proven to facilitate the dialogue generation task. Meanwhile, knowledge distillation, a knowledge transformation methodology among
This paper studies continual learning (CL) of a sequence of aspect sentiment classification (ASC) tasks in a particular CL setting called domain incremental learning (DIL). Each task is from a different domain or product. The DIL setting is particula