Do you want to publish a course? Click here

Measuring and Improving Consistency in Pretrained Language Models

قياس وتحسين الاتساق في نماذج اللغة المحددة مسبقا

384   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Abstract Consistency of a model---that is, the invariance of its behavior under meaning-preserving alternations in its input---is a highly desirable property in natural language processing. In this paper we study the question: Are Pretrained Language Models (PLMs) consistent with respect to factual knowledge? To this end, we create ParaRel?, a high-quality resource of cloze-style query English paraphrases. It contains a total of 328 paraphrases for 38 relations. Using ParaRel?, we show that the consistency of all PLMs we experiment with is poor--- though with high variance between relations. Our analysis of the representational spaces of PLMs suggests that they have a poor structure and are currently not suitable for representing knowledge robustly. Finally, we propose a method for improving model consistency and experimentally demonstrate its effectiveness.1



References used
https://aclanthology.org/
rate research

Read More

Existing work on probing of pretrained language models (LMs) has predominantly focused on sentence-level syntactic tasks. In this paper, we introduce document-level discourse probing to evaluate the ability of pretrained LMs to capture document-level relations. We experiment with 7 pretrained LMs, 4 languages, and 7 discourse probing tasks, and find BART to be overall the best model at capturing discourse --- but only in its encoder, with BERT performing surprisingly well as the baseline model. Across the different models, there are substantial differences in which layers best capture discourse information, and large disparities between models.
To obtain high-quality sentence embeddings from pretrained language models (PLMs), they must either be augmented with additional pretraining objectives or finetuned on a large set of labeled text pairs. While the latter approach typically outperforms the former, it requires great human effort to generate suitable datasets of sufficient size. In this paper, we show how PLMs can be leveraged to obtain high-quality sentence embeddings without the need for labeled data, finetuning or modifications to the pretraining objective: We utilize the generative abilities of large and high-performing PLMs to generate entire datasets of labeled text pairs from scratch, which we then use for finetuning much smaller and more efficient models. Our fully unsupervised approach outperforms strong baselines on several semantic textual similarity datasets.
Paraphrase generation has benefited extensively from recent progress in the designing of training objectives and model architectures. However, previous explorations have largely focused on supervised methods, which require a large amount of labeled d ata that is costly to collect. To address this drawback, we adopt a transfer learning approach and propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting. Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking (DB). To enforce a surface form dissimilar from the input, whenever the language model emits a token contained in the source sequence, DB prevents the model from outputting the subsequent source token for the next generation step. We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair (QQP) and the ParaNMT datasets and is robust to domain shift between the two datasets of distinct distributions. We also demonstrate that our model transfers to paraphrasing in other languages without any additional finetuning.
Taxonomies are symbolic representations of hierarchical relationships between terms or entities. While taxonomies are useful in broad applications, manually updating or maintaining them is labor-intensive and difficult to scale in practice. Conventio nal supervised methods for this enrichment task fail to find optimal parents of new terms in low-resource settings where only small taxonomies are available because of overfitting to hierarchical relationships in the taxonomies. To tackle the problem of low-resource taxonomy enrichment, we propose Musubu, an efficient framework for taxonomy enrichment in low-resource settings with pretrained language models (LMs) as knowledge bases to compensate for the shortage of information. Musubu leverages an LM-based classifier to determine whether or not inputted term pairs have hierarchical relationships. Musubu also utilizes Hearst patterns to generate queries to leverage implicit knowledge from the LM efficiently for more accurate prediction. We empirically demonstrate the effectiveness of our method in extensive experiments on taxonomies from both a SemEval task and real-world retailer datasets.
In this paper we present a system that exploits different pre-trained Language Models for assigning domain labels to WordNet synsets without any kind of supervision. Furthermore, the system is not restricted to use a particular set of domain labels. We exploit the knowledge encoded within different off-the-shelf pre-trained Language Models and task formulations to infer the domain label of a particular WordNet definition. The proposed zero-shot system achieves a new state-of-the-art on the English dataset used in the evaluation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا