تعد أساليب تفسير ما بعد الهوك فئة مهمة من الأساليب التي تساعد في فهم الأساس المنطقي وراء قرار النموذج المدربين.ولكن ما مدى فائدة المستخدمين النهائي نحو تحقيق مهمة معينة؟في هذه الورقة الرؤية، نقول الحاجة إلى معيار لتسهيل تقييمات فائدة أساليب تفسير ما بعد المخصص.كخطوة أولى لهذه الغاية، فإننا نعدد العقارات المرغوبة التي يجب أن تمتلكها مثل هذا المعيار لمهمة تصحيح التصحيح النصوص النصية.بالإضافة إلى ذلك، نسلط الضوء على أن هذا المعيار يسهل ليس فقط تقييم فعالية التفسيرات ولكن أيضا كفاءتها.
Post-hoc explanation methods are an important class of approaches that help understand the rationale underlying a trained model's decision. But how useful are they for an end-user towards accomplishing a given task? In this vision paper, we argue the need for a benchmark to facilitate evaluations of the utility of post-hoc explanation methods. As a first step to this end, we enumerate desirable properties that such a benchmark should possess for the task of debugging text classifiers. Additionally, we highlight that such a benchmark facilitates not only assessing the effectiveness of explanations but also their efficiency.
References used
https://aclanthology.org/
Modern deep learning models for natural language processing rely heavily on large amounts of annotated texts. However, obtaining such texts may be difficult when they contain personal or confidential information, for example, in health or legal domai
Temporal commonsense reasoning is a challenging task as it requires temporal knowledge usually not explicit in text. In this work, we propose an ensemble model for temporal commonsense reasoning. Our model relies on pre-trained contextual representat
Contrastive explanations clarify why an event occurred in contrast to another. They are inherently intuitive to humans to both produce and comprehend. We propose a method to produce contrastive explanations in the latent space, via a projection of th
Most current quality estimation (QE) models for machine translation are trained and evaluated in a fully supervised setting requiring significant quantities of labelled training data. However, obtaining labelled data can be both expensive and time-co
Sentiment analysis has attracted increasing attention in e-commerce. The sentiment polarities underlying user reviews are of great value for business intelligence. Aspect category sentiment analysis (ACSA) and review rating prediction (RP) are two es