إن استكشاف جوانب المعنى السورية الضمني أو غير المحدود في السياق مهم لفهم الجملة.في هذه الورقة، نقترح هندسة رواية قائمة على الإحلال في اكتشاف متطلبات المراجعة.الهدف هو تحسين التفاهم، معالجتها بعض الأنواع من المراجعات، خاصة بالنسبة لنوع الضمير المستبدل.نظرا لأن نظامنا القائم على الأسطلات يمكن أن يتوقع الضمائر محلها جيدا على مستوى الإشارة.ومع ذلك، فإن نظامنا المشترك على مستوى الجملة لا يتحسن في خط الأساس بيرت على مستوى الجملة.نقدم أيضا أنظمة تناقض إضافية، وإظهار النتائج لكل نوع من التحرير.
Exploring aspects of sentential meaning that are implicit or underspecified in context is important for sentence understanding. In this paper, we propose a novel architecture based on mentions for revision requirements detection. The goal is to improve understandability, addressing some types of revisions, especially for the Replaced Pronoun type. We show that our mention-based system can predict replaced pronouns well on the mention-level. However, our combined sentence-level system does not improve on the sentence-level BERT baseline. We also present additional contrastive systems, and show results for each type of edit.
References used
https://aclanthology.org/
Biomaterials are synthetic or natural materials used for constructing artificial organs, fabricating prostheses, or replacing tissues. The last century saw the development of thousands of novel biomaterials and, as a result, an exponential increase i
Within the last few years, the number of Arabic internet users and Arabic online content is in exponential growth. Dealing with Arabic datasets and the usage of non-explicit sentences to express an opinion are considered to be the major challenges in
This paper presents our strategy to tackle the EACL WANLP-2021 Shared Task 2: Sarcasm and Sentiment Detection. One of the subtasks aims at developing a system that identifies whether a given Arabic tweet is sarcastic in nature or not, while the other
Summarization evaluation remains an open research problem: current metrics such as ROUGE are known to be limited and to correlate poorly with human judgments. To alleviate this issue, recent work has proposed evaluation metrics which rely on question
State-of-the-art transformer models have achieved robust performance on a variety of NLP tasks. Many of these approaches have employed domain agnostic pre-training tasks to train models that yield highly generalized sentence representations that can