Do you want to publish a course? Click here

N-gram and Neural Models for Uralic Language Identification: NRC at VarDial 2021

ن نماذج N-Gram والعملات العصبية لتحديد اللغة الأورالية: NRC في Vardial 2021

374   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

We describe the systems developed by the National Research Council Canada for the Uralic language identification shared task at the 2021 VarDial evaluation campaign. We evaluated two different approaches to this task: a probabilistic classifier exploiting only character 5-grams as features, and a character-based neural network pre-trained through self-supervision, then fine-tuned on the language identification task. The former method turned out to perform better, which casts doubt on the usefulness of deep learning methods for language identification, where they have yet to convincingly and consistently outperform simpler and less costly classification algorithms exploiting n-gram features.



References used
https://aclanthology.org/
rate research

Read More

Coarse-grained linguistic information, such as named entities or phrases, facilitates adequately representation learning in pre-training. Previous works mainly focus on extending the objective of BERT's Masked Language Modeling (MLM) from masking ind ividual tokens to contiguous sequences of n tokens. We argue that such contiguously masking method neglects to model the intra-dependencies and inter-relation of coarse-grained linguistic information. As an alternative, we propose ERNIE-Gram, an explicitly n-gram masking method to enhance the integration of coarse-grained information into pre-training. In ERNIE-Gram, n-grams are masked and predicted directly using explicit n-gram identities rather than contiguous sequences of n tokens. Furthermore, ERNIE-Gram employs a generator model to sample plausible n-gram identities as optional n-gram masks and predict them in both coarse-grained and fine-grained manners to enable comprehensive n-gram prediction and relation modeling. We pre-train ERNIE-Gram on English and Chinese text corpora and fine-tune on 19 downstream tasks. Experimental results show that ERNIE-Gram outperforms previous pre-training models like XLNet and RoBERTa by a large margin, and achieves comparable results with state-of-the-art methods. The source codes and pre-trained models have been released at https://github.com/PaddlePaddle/ERNIE.
We describe our neural machine translation systems for the 2021 shared task on Unsupervised and Very Low Resource Supervised MT, translating between Upper Sorbian and German (low-resource) and between Lower Sorbian and German (unsupervised). The syst ems incorporated data filtering, backtranslation, BPE-dropout, ensembling, and transfer learning from high(er)-resource languages. As measured by automatic metrics, our systems showed strong performance, consistently placing first or tied for first across most metrics and translation directions.
High-performance neural language models have obtained state-of-the-art results on a wide range of Natural Language Processing (NLP) tasks. However, results for common benchmark datasets often do not reflect model reliability and robustness when appli ed to noisy, real-world data. In this study, we design and implement various types of character-level and word-level perturbation methods to simulate realistic scenarios in which input texts may be slightly noisy or different from the data distribution on which NLP systems were trained. Conducting comprehensive experiments on different NLP tasks, we investigate the ability of high-performance language models such as BERT, XLNet, RoBERTa, and ELMo in handling different types of input perturbations. The results suggest that language models are sensitive to input perturbations and their performance can decrease even when small changes are introduced. We highlight that models need to be further improved and that current benchmarks are not reflecting model robustness well. We argue that evaluations on perturbed inputs should routinely complement widely-used benchmarks in order to yield a more realistic understanding of NLP systems' robustness.
Saliency methods are widely used to interpret neural network predictions, but different variants of saliency methods often disagree even on the interpretations of the same prediction made by the same model. In these cases, how do we identify when are these interpretations trustworthy enough to be used in analyses? To address this question, we conduct a comprehensive and quantitative evaluation of saliency methods on a fundamental category of NLP models: neural language models. We evaluate the quality of prediction interpretations from two perspectives that each represents a desirable property of these interpretations: plausibility and faithfulness. Our evaluation is conducted on four different datasets constructed from the existing human annotation of syntactic and semantic agreements, on both sentence-level and document-level. Through our evaluation, we identified various ways saliency methods could yield interpretations of low quality. We recommend that future work deploying such methods to neural language models should carefully validate their interpretations before drawing insights.
We describe our participation in all the subtasks of the Germeval 2021 shared task on the identification of Toxic, Engaging, and Fact-Claiming Comments. Our system is an ensemble of state-of-the-art pre-trained models finetuned with carefully enginee red features. We show that feature engineering and data augmentation can be helpful when the training data is sparse. We achieve an F1 score of 66.87, 68.93, and 73.91 in Toxic, Engaging, and Fact-Claiming comment identification subtasks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا