توضح هذه المقالة التجارب والأنظمة التي طورها فريق SUKI للطبعة الثانية من المهمة المشتركة لتحديد الهاتية الرومانية (RDI) التي تم تنظيمها كجزء من حملة التقييم الفاديم 2021.لقد قدمنا اثنين يدير إلى المهمة المشتركة، وكان تقديمنا الثاني هو أفضل التقديم بشكل عام من هامش ملحوظ.استخدم أفضل العروض لدينا حرف N-Gram مقصورة BAWEES ساذجة مع نماذج اللغة التكيفية.نحن نصف تجاربنا على مجموعة التنمية المؤدية إلى كل من التقديمات.
This article describes the experiments and systems developed by the SUKI team for the second edition of the Romanian Dialect Identification (RDI) shared task which was organized as part of the 2021 VarDial Evaluation Campaign. We submitted two runs to the shared task and our second submission was the overall best submission by a noticeable margin. Our best submission used a character n-gram based naive Bayes classifier with adaptive language models. We describe our experiments on the development set leading to both submissions.
References used
https://aclanthology.org/
We describe two Jupyter notebooks that form the basis of two assignments in an introductory Natural Language Processing (NLP) module taught to final year undergraduate students at Dublin City University. The notebooks show the students how to train a
We present the findings and results of theSecond Nuanced Arabic Dialect IdentificationShared Task (NADI 2021). This Shared Taskincludes four subtasks: country-level ModernStandard Arabic (MSA) identification (Subtask1.1), country-level dialect identi
Dialect identification is a task with applicability in a vast array of domains, ranging from automatic speech recognition to opinion mining. This work presents our architectures used for the VarDial 2021 Romanian Dialect Identification subtask. We in
This work investigates the value of augmenting recurrent neural networks with feature engineering for the Second Nuanced Arabic Dialect Identification (NADI) Subtask 1.2: Country-level DA identification. We compare the performance of a simple word-le
Unsupervised Data Augmentation (UDA) is a semisupervised technique that applies a consistency loss to penalize differences between a model's predictions on (a) observed (unlabeled) examples; and (b) corresponding noised' examples produced via data au