يحقق هذا العمل في قيمة زيادة الشبكات العصبية المتكررة مع هندسة ميزة لهندسة الطلب العربي الثاني (NADI) 1.2: تحديد المستوى القطري.نقارن أداء LSTM على مستوى الكلمات البسيطة باستخدام Artrained Abbeddings مع واحدة معززة باستخدام ميزة الميزات للميزات اللغوية المهندسة.تظهر نتائجنا أن إضافة ميزات صريحة إلى LSTM ضارية للأداء.نحن نعزو هذا فقدان الأداء على التبريد في بعض العناصر اللغوية في بعض النصوص، وكلية المواضيع، والتنقل المشارك.
This work investigates the value of augmenting recurrent neural networks with feature engineering for the Second Nuanced Arabic Dialect Identification (NADI) Subtask 1.2: Country-level DA identification. We compare the performance of a simple word-level LSTM using pretrained embeddings with one enhanced using feature embeddings for engineered linguistic features. Our results show that the addition of explicit features to the LSTM is detrimental to performance. We attribute this performance loss to the bivalency of some linguistic items in some text, ubiquity of topics, and participant mobility.
References used
https://aclanthology.org/
Dialect and standard language identification are crucial tasks for many Arabic natural language processing applications. In this paper, we present our deep learning-based system, submitted to the second NADI shared task for country-level and province
We present the findings and results of theSecond Nuanced Arabic Dialect IdentificationShared Task (NADI 2021). This Shared Taskincludes four subtasks: country-level ModernStandard Arabic (MSA) identification (Subtask1.1), country-level dialect identi
This article describes a system to predict the complexity of words for the Lexical Complexity Prediction (LCP) shared task hosted at SemEval 2021 (Task 1) with a new annotated English dataset with a Likert scale. Located in the Lexical Semantics trac
Building NLP systems that serve everyone requires accounting for dialect differences. But dialects are not monolithic entities: rather, distinctions between and within dialects are captured by the presence, absence, and frequency of dozens of dialect
This paper presents our approach to address the EACL WANLP-2021 Shared Task 1: Nuanced Arabic Dialect Identification (NADI). The task is aimed at developing a system that identifies the geographical location(country/province) from where an Arabic twe