في الخطوة الأولى نحو تحسين الكشف عن المشاعر الهولندية، نحاول الجمع بين نماذج المحولات الهولندية Bertje والرسم مع الأساليب القائمة على المعجم.نقترح دوران هندستين: واحدة يتم فيها حقن معلومات معجمية مباشرة في طراز المحول ونهج التعلم التلوي حيث يتم دمج التنبؤات من المحولات مع ميزات المعجم.يتم اختبار النماذج على 1000 تغريدة هولندية و 1000 تعليق من البرامج التلفزيونية التي تم تفاحها يدويا مع فئات العاطفة والأبعاد.نجد أن Robbert تفوق بوضوح Bertje، ولكن هذا يضيف مباشرة معلومات المعجم إلى المحولات لا يحسن الأداء.في نهج التعلم التلوي، أصبحت معلومات المعجم تأثير إيجابي على Bertje، ولكن ليس على Robbert.هذا يشير إلى أن المزيد من المعلومات العاطفية تحتوي بالفعل ضمن نموذج اللغة الأخير.
In a first step towards improving Dutch emotion detection, we try to combine the Dutch transformer models BERTje and RobBERT with lexicon-based methods. We propose two architectures: one in which lexicon information is directly injected into the transformer model and a meta-learning approach where predictions from transformers are combined with lexicon features. The models are tested on 1,000 Dutch tweets and 1,000 captions from TV-shows which have been manually annotated with emotion categories and dimensions. We find that RobBERT clearly outperforms BERTje, but that directly adding lexicon information to transformers does not improve performance. In the meta-learning approach, lexicon information does have a positive effect on BERTje, but not on RobBERT. This suggests that more emotional information is already contained within this latter language model.
References used
https://aclanthology.org/
Since their inception, transformer-based language models have led to impressive performance gains across multiple natural language processing tasks. For Arabic, the current state-of-the-art results on most datasets are achieved by the AraBERT languag
The problem of detecting psychological stress in online posts, and more broadly, of detecting people in distress or in need of help, is a sensitive application for which the ability to interpret models is vital. Here, we present work exploring the us
Stance detection (SD) entails classifying the sentiment of a text towards a given target, and is a relevant sub-task for opinion mining and social media analysis. Recent works have explored knowledge infusion supplementing the linguistic competence a
In Romanian language there are some resources for automatic text comprehension, but for Emotion Detection, not lexicon-based, there are none. To cover this gap, we extracted data from Twitter and created the first dataset containing tweets annotated
We present a model to predict fine-grained emotions along the continuous dimensions of valence, arousal, and dominance (VAD) with a corpus with categorical emotion annotations. Our model is trained by minimizing the EMD (Earth Mover's Distance) loss