أدى الاستخدام المتزايد لمواقع وسائل التواصل الاجتماعي في بلدان مثل الهند إلى مجلدات كبيرة من البيانات المختلطة.يمكن أن يوفر تحليل المعنويات لهذه البيانات رؤى غير متكاملة في وجهات نظر الناس والآراء.غالبا ما تكون البيانات المختلطة من التعليمات البرمجية صاخبة في الطبيعة بسبب تهجئة متعددة لنفس الكلمة، ونقص ترتيب واضح للكلمات في جملة، واختصرات عشوائية.وبالتالي، فإن العمل مع البيانات المختلطة من التعليمات البرمجية أكثر تحديا من بيانات أحادية الأونلينغ.تفسير التنبؤات النموذجية تتيح لنا تحديد متانة النموذج ضد أشكال مختلفة من الضوضاء.في هذه الورقة، نقترح منهجية لإدماج النهج القابلة للتفسير في تحليل المعنويات المختلطة من التعليمات البرمجية.من خلال تفسير تنبؤات نماذج تحليل المعنويات، نقيم مدى جودة النموذج قادر على التكيف مع الضوضاء الضمنية الموجودة في البيانات المختلطة التعليمات البرمجية.
The increasing use of social media sites in countries like India has given rise to large volumes of code-mixed data. Sentiment analysis of this data can provide integral insights into people's perspectives and opinions. Code-mixed data is often noisy in nature due to multiple spellings for the same word, lack of definite order of words in a sentence, and random abbreviations. Thus, working with code-mixed data is more challenging than monolingual data. Interpreting a model's predictions allows us to determine the robustness of the model against different forms of noise. In this paper, we propose a methodology to integrate explainable approaches into code-mixed sentiment analysis. By interpreting the predictions of sentiment analysis models we evaluate how well the model is able to adapt to the implicit noises present in code-mixed data.
References used
https://aclanthology.org/
Code-mixed language plays a crucial role in communication in multilingual societies. Though the recent growth of web users has greatly boosted the use of such mixed languages, the current generation of dialog systems is primarily monolingual. This in
Sentiment analysis aims to detect the overall sentiment, i.e., the polarity of a sentence, paragraph, or text span, without considering the entities mentioned and their aspects. Aspect-based sentiment analysis aims to extract the aspects of the given
Recently, the majority of sentiment analysis researchers focus on target-based sentiment analysis because it delivers in-depth analysis with more accurate results as compared to traditional sentiment analysis. In this paper, we propose an interactive
This paper presents the ROCLING 2021 shared task on dimensional sentiment analysis for educational texts which seeks to identify a real-value sentiment score of self-evaluation comments written by Chinese students in the both valence and arousal dime
Both the issues of data deficiencies and semantic consistency are important for data augmentation. Most of previous methods address the first issue, but ignore the second one. In the cases of aspect-based sentiment analysis, violation of the above is