Do you want to publish a course? Click here

Intrinsic evaluation of language models for code-switching

التقييم الجوهري نماذج اللغة لتبديل التعليمات البرمجية

303   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Language models used in speech recognition are often either evaluated intrinsically using perplexity on test data, or extrinsically with an automatic speech recognition (ASR) system. The former evaluation does not always correlate well with ASR performance, while the latter could be specific to particular ASR systems. Recent work proposed to evaluate language models by using them to classify ground truth sentences among alternative phonetically similar sentences generated by a fine state transducer. Underlying such an evaluation is the assumption that the generated sentences are linguistically incorrect. In this paper, we first put this assumption into question, and observe that alternatively generated sentences could often be linguistically correct when they differ from the ground truth by only one edit. Secondly, we showed that by using multi-lingual BERT, we can achieve better performance than previous work on two code-switching data sets. Our implementation is publicly available on Github at https://github.com/sikfeng/language-modelling-for-code-switching.



References used
https://aclanthology.org/
rate research

Read More

Code-switching (CS), a ubiquitous phenomenon due to the ease of communication it offers in multilingual communities still remains an understudied problem in language processing. The primary reasons behind this are: (1) minimal efforts in leveraging l arge pretrained multilingual models, and (2) the lack of annotated data. The distinguishing case of low performance of multilingual models in CS is the intra-sentence mixing of languages leading to switch points. We first benchmark two sequence labeling tasks -- POS and NER on 4 different language pairs with a suite of pretrained models to identify the problems and select the best performing char-BERT model among them (addressing (1)). We then propose a self training method to repurpose the existing pretrained models using a switch-point bias by leveraging unannotated data (addressing (2)). We finally demonstrate that our approach performs well on both tasks by reducing the gap between the switch point performance while retaining the overall performance on two distinct language pairs in both the tasks. We plan to release our models and the code for all our experiments.
In this paper we present a deep learning code completion model for the R language. We introduce several techniques to utilize language modeling based architecture in the code completion task. With these techniques, the model requires low resources, b ut still achieves high quality. We also present an evaluation dataset for the R language completion task. Our dataset contains multiple autocompletion usage contexts that provides robust validation results. The dataset is publicly available.
Coherent discourse is distinguished from a mere collection of utterances by the satisfaction of a diverse set of constraints, for example choice of expression, logical relation between denoted events, and implicit compatibility with world-knowledge. Do neural language models encode such constraints? We design an extendable set of test suites addressing different aspects of discourse and dialogue coherence. Unlike most previous coherence evaluation studies, we address specific linguistic devices beyond sentence order perturbations, which allow for a more fine-grained analysis of what constitutes coherence and what neural models trained on a language modelling objective are capable of encoding. Extending the targeted evaluation paradigm for neural language models (Marvin and Linzen, 2018) to phenomena beyond syntax, we show that this paradigm is equally suited to evaluate linguistic qualities that contribute to the notion of coherence.
Text generation is a highly active area of research in the computational linguistic community. The evaluation of the generated text is a challenging task and multiple theories and metrics have been proposed over the years. Unfortunately, text generat ion and evaluation are relatively understudied due to the scarcity of high-quality resources in code-mixed languages where the words and phrases from multiple languages are mixed in a single utterance of text and speech. To address this challenge, we present a corpus (HinGE) for a widely popular code-mixed language Hinglish (code-mixing of Hindi and English languages). HinGE has Hinglish sentences generated by humans as well as two rule-based algorithms corresponding to the parallel Hindi-English sentences. In addition, we demonstrate the in- efficacy of widely-used evaluation metrics on the code-mixed data. The HinGE dataset will facilitate the progress of natural language generation research in code-mixed languages.
We evaluate the use of direct intrinsic word embedding evaluation tasks for specialized language. Our case study is philosophical text: human expert judgements on the relatedness of philosophical terms are elicited using a synonym detection task and a coherence task. Uniquely for our task, experts must rely on explicit knowledge and cannot use their linguistic intuition, which may differ from that of the philosopher. We find that inter-rater agreement rates are similar to those of more conventional semantic annotation tasks, suggesting that these tasks can be used to evaluate word embeddings of text types for which implicit knowledge may not suffice.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا