Do you want to publish a course? Click here

Relativistic theory of the above-threshold multiphoton ionization of hydrogen-like atoms in the ultrastrong laser fields

69   0   0.0 ( 0 )
 Added by Garnik F. Mkrtchian
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

The relativistic theory of above-threshold ionization (ATI) of hydrogen-like atoms in ultrastrong radiation fields, taking into account the photoelectron induced rescattering in the continuum spectrum is developed. It is shown that the contribution of the latter in the multiphoton ionization probability even in the Born approximation by Coulomb field is of the order of ATI probability in the scope of Keldysh-Faisal-Reiss ansatz.



rate research

Read More

We experimentally demonstrate spatiotemporal steering of photoelectron emission in multiphoton above-threshold single ionization of atoms exposed to a phase-controlled orthogonally polarized two-color (OTC) laser pulse. Spatial and energy resolved photoelectron angular distributions are measured as a function of the laser phase, allowing us to look into the fine structures and emission dynamics. The slow and fast photoelectrons, distinguished by the energy larger or smaller than 2Up with Up being the ponderomotive energy of a free electron in the laser field, have distinct spatiotemporal dependences of the laser waveform. The phase-of-phase of the slow electron oscillates as functions of both the energy and emission direction, however, the fast electron present rather flat phase structure which merely depends on its emission direction. Three-dimensional generalized quantum trajectory Monte Carlo simulations are performed to explore the sub-cycle dynamics of the electron emission in the phase-controlled OTC pulse.
The alignment dependence of the ionization behavior of H$_2$ exposed to intense ultrashort laser pulses is investigated on the basis of solutions of the full time-dependent Schrodinger equation within the fixed-nuclei and dipole approximation. The total ionization yields as well as the energy-resolved electron spectra have been calculated for a parallel and a perpendicular orientation of the molecular axis with respect to the polarization axis of linear polarized laser pulses. For most, but not all considered laser peak intensities the parallel aligned molecules are easier to ionize. Furthermore, it is shown that the velocity formulation of the strong-field approximation predicts a simple interference pattern for the ratio of the energy-resolved electron spectra obtained for the two orientations, but this is not confirmed by the full ab initio results.
We develop a relativistic Coulomb-corrected strong field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogen-like ions. The Coulomb-corrected SFA is based on the relativistic eikonal-Volkov wave function describing the ionized electron laser-driven continuum dynamics disturbed by the Coulomb field of the ionic core. The SFA in different partitions of the total Hamiltonian is considered. The formalism is applied for direct ionization of a hydrogen-like system in a strong linearly polarized laser field. The differential and total ionization rates are calculated analytically. The relativistic analogue of the Perelomov-Popov-Terentev ionization rate is retrieved within the SFA technique. The physical relevance of the SFA in different partitions is discussed.
The role of Coulomb focusing in above-threshold ionization in an elliptically polarized mid-infrared strong laser field is investigated within a semiclassical model incorporating tunneling and Coulomb field effects. It is shown that Coulomb focusing up to moderate ellipticity values is dominated by multiple forward scattering of the ionized electron by the atomic core that creates a characteristic low-energy structure in the photoelectron spectrum and is responsible for the peculiar energy scaling of the ionization normalized yield along the major polarization axis. At higher ellipticities, the electron continuum dynamics is disturbed by the Coulomb field effect mostly at the exit of the ionization tunnel. Due to the latter, the normalized yield is found to be enhanced, with the enhancement factor being sharply pronounced at intermediate ellipticities.
82 - Min Li , Peng Zhang , Siqiang Luo 2015
High-resolution photoelectron momentum distributions of Xe atoms ionized by 800-nm linearly polarized laser fields have been traced at intensities from 1.1*1013 to 3.5*1013W/cm2 using velocity-map imaging techniques. At certain laser intensities, the momentum spectrum exhibits a distinct double-ring structure for low-order above-threshold ionization, which appears to be absent at lower or higher laser intensities. By investigating the intensity-resolved photoelectron energy spectrum, we find that this double-ring structure originates from resonant multiphoton ionization involving multiple Rydberg states of atoms. Varying the laser intensity, we can selectively enhance the resonant multiphoton ionization through certain atomic Rydberg states. The photoelectron angular distributions of multiphoton resonance are also investigated for the low-order above-threshold ionization.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا