No Arabic abstract
The alignment dependence of the ionization behavior of H$_2$ exposed to intense ultrashort laser pulses is investigated on the basis of solutions of the full time-dependent Schrodinger equation within the fixed-nuclei and dipole approximation. The total ionization yields as well as the energy-resolved electron spectra have been calculated for a parallel and a perpendicular orientation of the molecular axis with respect to the polarization axis of linear polarized laser pulses. For most, but not all considered laser peak intensities the parallel aligned molecules are easier to ionize. Furthermore, it is shown that the velocity formulation of the strong-field approximation predicts a simple interference pattern for the ratio of the energy-resolved electron spectra obtained for the two orientations, but this is not confirmed by the full ab initio results.
The ionization probability of N$_2$, O$_2$, and CO$_2$ in intense laser fields is studied theoretically as a function of the alignment angle by solving the time-dependent Schrodinger equation numerically assuming only the single-active-electron approximation. The results are compared to recent experimental data [D.~Pavi{v{c}}i{c} et al., Phys.,Rev.,Lett. {bf 98}, 243001 (2007)] and good agreement is found for N$_2$ and O$_2$. For CO$_2$ a possible explanation is provided for the failure of simplified single-active-electron models to reproduce the experimentally observed narrow ionization distribution. It is based on a field-induced coherent core-trapping effect.
Application of a parallel-projection inversion technique to z-scan spectra of multiply charged xenon and krypton ions, obtained by non-resonant field ionization of neutral targets, has for the first time permitted the direct observation of intensity-dependent ionization probabilities. These ionization efficiency curves have highlighted the presence of structure in the tunnelling regime, previously unobserved under full-volume techniques.
A theoretical study of the intense-field single ionization of molecular hydrogen or deuterium oriented either parallel or perpendicular to a linear polarized laser pulse (400 nm) is performed for different internuclear separations and pulse lengths in an intensity range of $(2-13)times10^{13} $W cm$^{-2}$. The investigation is based on a non-perturbative treatment that solves the full time-dependent Schrodinger equation of both correlated electrons within the fixed-nuclei and the dipole approximation. The results for various internuclear separations are used to obtain the ionization yields of molecular hydrogen and deuterium in their ground vibrational states. An atomic model is used to identify the influence of the intrinsic diatomic two-center character of the problem.
We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using nonlinear dynamics. We provide an explanation for the lack of complete ionization at high intensity and for the decrease of the ionization probability as intensity is increased. We investigate the role of each part of the laser pulse (ramp-up, plateau, ramp-down) in this process. We emphasize the role of the choice for the ionization criterion, energy versus distance criterion.
We report on tunnel ionization of Xe by 2-cycle, intense, infrared laser pulses and its dependence on carrier-envelope-phase (CEP). At low values of optical field ($E$), the ionization yield is maximum for cos-like pulses with the dependence becoming stronger for higher charge states. At higher $E$-values, the CEP dependence either washes out or flips. A simple phenomenological model is developed that predicts and confirms the observed results. CEP effects are seen to persist for 8-cycle pulses. Unexpectedly, electron rescattering plays an unimportant role in the observed CEP dependence. Our results provide fresh perspectives in ultrafast, strong-field ionization dynamics of multi-electron systems that lie at the core of attosecond science.