Do you want to publish a course? Click here

Selective enhancement of resonant multiphoton ionization with strong laser fields

83   0   0.0 ( 0 )
 Added by Min Li
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

High-resolution photoelectron momentum distributions of Xe atoms ionized by 800-nm linearly polarized laser fields have been traced at intensities from 1.1*1013 to 3.5*1013W/cm2 using velocity-map imaging techniques. At certain laser intensities, the momentum spectrum exhibits a distinct double-ring structure for low-order above-threshold ionization, which appears to be absent at lower or higher laser intensities. By investigating the intensity-resolved photoelectron energy spectrum, we find that this double-ring structure originates from resonant multiphoton ionization involving multiple Rydberg states of atoms. Varying the laser intensity, we can selectively enhance the resonant multiphoton ionization through certain atomic Rydberg states. The photoelectron angular distributions of multiphoton resonance are also investigated for the low-order above-threshold ionization.

rate research

Read More

Multiphoton ionization of sodium by femtosecond laser pulses of 800 nm wavelength in the range of laser peak intensities entering over-the-barrier ionization domain is studied. Photoelectron momentum distributions and the energy spectra are determined numerically by solving the time dependent Schroedinger equation for three values of the laser intensity from this domain. The calculated spectra agree well with the spectra obtained experimentally by Hart et al (Phys. Rev. A 2016 93 063426). A partial wave analysis of the spectral peaks related to Freeman resonances has shown that each peak is a superposition of the contributions of photoelectrons produced by the resonantly enhanced multiphoton ionization via different intermediate states. It is demonstrated that at specific laser intensities the selective ionization, which occurs predominantly through a single intermediate state, is possible.
Aiming at the investigation of above-threshold ionization in super-strong laser fields with highly charged ions, we develop a Coulomb-corrected strong field approximation (SFA). The influence of the Coulomb potential of the atomic core on the ionized electron dynamics in the continuum is taken into account via the eikonal approximation, treating the Coulomb potential perturbatively in the phase of the quasi-classical wave function of the continuum electron. In this paper the formalism of the Coulomb-corrected SFA for the nonrelativistic regime is discussed employing velocity and length gauge. Direct ionization of a hydrogen-like system in a strong linearly polarized laser field is considered. The relation of the results in the different gauges to the Perelomov-Popov-Terentev imaginary-time method is discussed.
We develop a relativistic Coulomb-corrected strong field approximation (SFA) for the investigation of spin effects at above-threshold ionization in relativistically strong laser fields with highly charged hydrogen-like ions. The Coulomb-corrected SFA is based on the relativistic eikonal-Volkov wave function describing the ionized electron laser-driven continuum dynamics disturbed by the Coulomb field of the ionic core. The SFA in different partitions of the total Hamiltonian is considered. The formalism is applied for direct ionization of a hydrogen-like system in a strong linearly polarized laser field. The differential and total ionization rates are calculated analytically. The relativistic analogue of the Perelomov-Popov-Terentev ionization rate is retrieved within the SFA technique. The physical relevance of the SFA in different partitions is discussed.
The role of Coulomb focusing in above-threshold ionization in an elliptically polarized mid-infrared strong laser field is investigated within a semiclassical model incorporating tunneling and Coulomb field effects. It is shown that Coulomb focusing up to moderate ellipticity values is dominated by multiple forward scattering of the ionized electron by the atomic core that creates a characteristic low-energy structure in the photoelectron spectrum and is responsible for the peculiar energy scaling of the ionization normalized yield along the major polarization axis. At higher ellipticities, the electron continuum dynamics is disturbed by the Coulomb field effect mostly at the exit of the ionization tunnel. Due to the latter, the normalized yield is found to be enhanced, with the enhancement factor being sharply pronounced at intermediate ellipticities.
We have investigated multiphoton multiple ionization dynamics of argon and xenon atoms using a new x-ray free electron laser (XFEL) facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that highly charged Xe ions with the charge state up to +26 are produced predominantly via four-photon absorption as well as highly charged Ar ions with the charge state up to +10 are produced via two-photon absorption at a photon energy of 5.5 keV. The absolute fluence of the XFEL pulse, needed for comparison between theory and experiment, has been determined using two-photon processes in the argon atom with the help of benchmark ab initio calculations. Our experimental results, in combination with a newly developed theoretical model for heavy atoms, demonstrate the occurrence of multiphoton absorption involving deep inner shells.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا