Do you want to publish a course? Click here

A microfabricated surface-electrode ion trap in silicon

132   0   0.0 ( 0 )
 Added by Joe Britton
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The prospect of building a quantum information processor underlies many recent advances ion trap fabrication techniques. Potentially, a quantum computer could be constructed from a large array of interconnected ion traps. We report on a micrometer-scale ion trap, fabricated from bulk silicon using micro-electromechanical systems (MEMS) techniques. The trap geometry is relatively simple in that the electrodes lie in a single plane beneath the ions. In such a trap we confine laser-cooled 24Mg+ ions approximately 40 microns above the surface. The fabrication technique and planar electrode geometry together make this approach amenable to scaling up to large trap arrays. In addition we observe that little laser cooling light is scattered by the electrodes.



rate research

Read More

We characterise the performance of a surface-electrode ion chip trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to <~ 10 nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.
We demonstrate confinement of individual atomic ions in a radio-frequency Paul trap with a novel geometry where the electrodes are located in a single plane and the ions confined above this plane. This device is realized with a relatively simple fabrication procedure and has important implications for quantum state manipulation and quantum information processing using large numbers of ions. We confine laser-cooled Mg-24 ions approximately 40 micrometer above planar gold electrodes. We measure the ions motional frequencies and compare them to simulations. From measurements of the escape time of ions from the trap, we also determine a heating rate of approximately five motional quanta per millisecond for a trap frequency of 5.3 MHz.
For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recombination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher secular frequencies during the transportation processes can be achieved by optimising trap geometries. We show how two different arrangements of segmented static potential electrodes in surface ion traps can be optimised for fast ion separation or recombination processes. We also solve the equations of motion for the ion dynamics during the separation process and illustrate important considerations that need to be taken into account to make the process adiabatic.
We demonstrate loading by laser ablation of $^{88}$Sr$^+$ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser is not required to photoionize the ablated material. The efficiency and lifetime of several candidate materials for the laser ablation target are characterized by measuring the trapped ion fluorescence signal for a number of consecutive loads. Additionally, laser ablation is used to load traps with a trap depth (40 meV) below where electron impact ionization loading is typically successful ($gtrsim$ 500 meV).
A novel approach to optics integration in ion traps is demonstrated based on a surface electrode ion trap that is microfabricated on top of a dielectric mirror. Additional optical losses due to fabrication are found to be as low as 80 ppm for light at 422 nm. The integrated mirror is used to demonstrate light collection from, and imaging of, a single 88 Sr+ ion trapped $169pm4 mu$m above the mirror.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا