Do you want to publish a course? Click here

Ultrafast Coherent Coupling of Atomic Hyperfine and Photon Frequency Qubits

216   0   0.0 ( 0 )
 Added by Martin Madsen
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate ultrafast coherent coupling between an atomic qubit stored in a single trapped cadmium ion and a photonic qubit represented by two resolved frequencies of a photon. Such ultrafast coupling is crucial for entangling networks of remotely-located trapped ions through photon interference, and is also a key component for realizing ultrafast quantum gates between Coulomb-coupled ions.



rate research

Read More

Quantum memory will be a key component in future quantum networks, and atomic frequency combs (AFCs) in rare-earth-doped crystals are one promising platform for realizing this technology. We theoretically and experimentally investigate the formation of AFCs in Pr3+:Y2SiO5, with an overall bandwidth of 120 MHz and tooth spacing ranging from 0.1 MHz to 20 MHz, showing agreement between our calculations and measurements. We observe that the echo efficiency depends crucially on the AFC tooth spacing. Our results suggest approaches to developing a high-efficiency AFC quantum memory.
We demonstrate single qubit operations on a trapped atom hyperfine qubit using a single ultrafast pulse from a mode-locked laser. We shape the pulse from the laser and perform a pi rotation of the qubit in less than 50 ps with a population transfer exceeding 99% and negligible effects from spontaneous emission or ac Stark shifts. The gate time is significantly shorter than the period of atomic motion in the trap (Rabi frequency / trap frequency > 10000), demonstrating that this interaction takes place deep within the strong excitation regime.
We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.
304 - M. R. Dietrich , N. Kurz , T. Noel 2010
State preparation, qubit rotation, and high fidelity readout are demonstrated for two separate baseven qubit types. First, an optical qubit on the narrow 6S$_{1/2}$ to 5D$_{5/2}$ transition at 1.76 $mu$m is implemented. Then, leveraging the techniques developed there for readout, a ground state hyperfine qubit using the magnetically insensitive transition at 8 GHz is accomplished.
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto n coherent-state (CS) qubits, by employing 2n microwave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2n microwave or optical cavities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا