Do you want to publish a course? Click here

Entanglement of Atomic Qubits using an Optical Frequency Comb

671   0   0.0 ( 0 )
 Added by David Hayes
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.



rate research

Read More

We demonstrate efficient and reversible mapping of a light field onto a thulium-doped crystal using an atomic frequency comb (AFC). Thanks to an accurate spectral preparation of the sample, we reach an efficiency of 9%. Our interpretation of the data is based on an original spectral analysis of the AFC. By independently measuring the absorption spectrum, we show that the efficiency is both limited by the available optical thickness and the preparation procedure at large absorption depth for a given bandwidth. The experiment is repeated with less than one photon per pulse and single photon counting detectors. We clearly observe that the AFC protocol is compatible with the noise level required for weak quantum field storage.
381 - Y. Cai , J. Roslund , V. Thiel 2020
Measuring the spectral properties of an optical frequency comb is among the most fundamental tasks of precision metrology. In contrast to general single-parameter measurement schemes, we demonstrate here single shot multiparameter estimation at and beyond the standard quantum limit. The mean energy and the central frequency of ultrafast pulses are simultaneously determined with a multi-pixel-spectrally-resolved (MPSR) apparatus, without changing the photonics architecture. Moreover, using a quantum frequency comb that consists of multiple squeezed states in a family of Hermite-Gaussian spectral/temporal modes, the signal-to-noise ratios of the mean energy and the central frequency measurements surpass the shot-noise limit by around 19% and 15%, respectively. Combining our multi-pixel detection scheme and the intrinsic multimode quantum resource could find applications in ultrafast quantum metrology and multimode quantum information processing.
249 - Y. P. Huang , M. G. Moore 2008
The problem of on-demand generation of entanglement between single-atom qubits via a common photonic channel is examined within the framework of optical interferometry. As expected, for a Mach-Zehnder interferometer with coherent laser beam as input, a high-finesse optical cavity is required to overcome sensitivity to spontaneous emission. We show, however, that with a twin-Fock input, useful entanglement can in principle be created without cavity-enhancement. Both approaches require single-photon resolving detectors, and best results would be obtained by combining both cavity-feedback and twin-Fock inputs. Such an approach may allow a fidelity of $.99$ using a two-photon input and currently available mirror and detector technology. In addition, we study interferometers based on NOON states and show that they perform similarly to the twin-Fock states, yet without the need for high-precision photo-detectors. The present interferometrical approach can serve as a universal, scalable circuit element for quantum information processing, from which fast quantum gates, deterministic teleportation, entanglement swapping $etc.$, can be realized with the aid of single-qubit operations.
Quantum entanglement is the central resource behind applications in quantum information science, from quantum computers and simulators of complex quantum systems to metrology and secure communication. All of these applications require the quantum control of large networks of quantum bits (qubits) to realize gains and speedups over conventional devices. However, propagating quantum entanglement generally becomes difficult or impossible as the system grows in size, owing to the inevitable decoherence from the complexity of connections between the qubits and increased couplings to the environment. Here, we demonstrate the first step in a modular approach to scaling entanglement by utilizing a hierarchy of quantum buses on a collection of three atomic ion qubits stored in two remote ion trap modules. Entanglement within a module is achieved with deterministic near-field interactions through phonons, and remote entanglement between modules is achieved through a probabilistic interaction through photons. This minimal system allows us to address generic issues in synchronization and scalability of entanglement with multiple buses, while pointing the way toward a modular large-scale quantum computer architecture that promises less spectral crowding and less decoherence. We generate this modular entanglement faster than the observed qubit decoherence rate, thus the system can be scaled to much larger dimensions by adding more modules.
We perform randomized benchmarking on neutral atomic quantum bits (qubits) confined in an optical lattice. Single qubit gates are implemented using microwaves, resulting in a measured error per randomized computational gate of 1.4(1) x 10^-4 that is dominated by the system T2 relaxation time. The results demonstrate the robustness of the system, and its viability for more advanced quantum information protocols.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا