No Arabic abstract
Due to inhomogeneous broadening, the absorption lines of rare-earth-ion dopands in crystals are many order of magnitudes wider than the homogeneous linewidths. Several ways have been proposed to use ions with different inhomogeneous shifts as qubit registers, and to perform gate operations between such registers by means of the static dipole coupling between the ions. In this paper we show that in order to implement high-fidelity quantum gate operations by means of the static dipole interaction, we require the participating ions to be strongly coupled, and that the density of such strongly coupled registers in general scales poorly with register size. Although this is critical to previous proposals which rely on a high density of functional registers, we describe architectures and preparation strategies that will allow scalable quantum computers based on rare-earth-ion doped crystals.
Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap crystals to enable or improve persistent spectral hole-burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band, and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5, a widely-used material in current quantum memory research.
We report on progress towards implementing mixed ion species quantum information processing for a scalable ion trap architecture. Mixed species chains may help solve several problems with scaling ion trap quantum computation to large numbers of qubits. Initial temperature measurements of linear Coulomb crystals containing barium and ytterbium ions indicate that the mass difference does not significantly impede cooling at low ion numbers. Average motional occupation numbers are estimated to be $bar{n} approx 130$ quanta per mode for chains with small numbers of ions, which is within a factor of three of the Doppler limit for barium ions in our trap. We also discuss generation of ion-photon entanglement with barium ions with a fidelity of $F ge 0.84$, which is an initial step towards remote ion-ion coupling in a more scalable quantum information architecture. Further, we are working to implement these techniques in surface traps in order to exercise greater control over ion chain ordering and positioning.
Quantum light-matter interfaces (QLMIs) connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching, and studies of fundamental physics. Rare-earth-ion (REI) doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium REIs to photonic nano-cavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled REIs is performed via photon echoes. Long optical coherence times (T2~100 microseconds) and small inhomogeneous broadening are measured for the cavity-coupled REIs, thus demonstrating their potential for on-chip scalable QLMIs.
We characterize the 795 nm $^3$H$_6$ to $^3$H$_4$ transition of Tm$^{3+}$ in a Ti$^{4+}$:LiNbO$_{3}$ waveguide at temperatures as low as 800 mK. Coherence and hyperfine population lifetimes -- up to 117 $mu$s and 2.5 hours, respectively -- exceed those at 3 K at least ten-fold, and are equivalent to those observed in a bulk Tm$^{3+}$:LiNbO$_{3}$ crystal under similar conditions. We also find a transition dipole moment that is equivalent to that of the bulk. Finally, we prepare a 0.5 GHz-bandwidth atomic frequency comb of finesse $>$2 on a vanishing background. These results demonstrate the suitability of rare-earth-doped waveguides created using industry-standard Ti-indiffusion in LiNbO$_3$ for on-chip quantum applications.
Trapped-ion quantum computers have demonstrated high-performance gate operations in registers of about ten qubits. However, scaling up and parallelizing quantum computations with long one-dimensional (1D) ion strings is an outstanding challenge due to the global nature of the motional modes of the ions which mediate qubit-qubit couplings. Here, we devise methods to implement scalable and parallel entangling gates by using engineered localized phonon modes. We propose to tailor such localized modes by tuning the local potential of individual ions with programmable optical tweezers. Localized modes of small subsets of qubits form the basis to perform entangling gates on these subsets in parallel. We demonstrate the inherent scalability of this approach by presenting analytical and numerical results for long 1D ion chains and even for infinite chains of uniformly spaced ions. Furthermore, we show that combining our methods with optimal coherent control techniques allows to realize maximally dense universal parallelized quantum circuits.