Do you want to publish a course? Click here

Scalable Quantum Computing Architecture with Mixed Species Ion Chains

142   0   0.0 ( 0 )
 Added by John Wright
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on progress towards implementing mixed ion species quantum information processing for a scalable ion trap architecture. Mixed species chains may help solve several problems with scaling ion trap quantum computation to large numbers of qubits. Initial temperature measurements of linear Coulomb crystals containing barium and ytterbium ions indicate that the mass difference does not significantly impede cooling at low ion numbers. Average motional occupation numbers are estimated to be $bar{n} approx 130$ quanta per mode for chains with small numbers of ions, which is within a factor of three of the Doppler limit for barium ions in our trap. We also discuss generation of ion-photon entanglement with barium ions with a fidelity of $F ge 0.84$, which is an initial step towards remote ion-ion coupling in a more scalable quantum information architecture. Further, we are working to implement these techniques in surface traps in order to exercise greater control over ion chain ordering and positioning.



rate research

Read More

Efficient ion-photon coupling is an important component for large-scale ion-trap quantum computing. We propose that arrays of phase Fresnel lenses (PFLs) are a favorable optical coupling technology to match with multi-zone ion traps. Both are scalable technologies based on conventional micro-fabrication techniques. The large numerical apertures (NAs) possible with PFLs can reduce the readout time for ion qubits. PFLs also provide good coherent ion-photon coupling by matching a large fraction of an ions emission pattern to a single optical propagation mode (TEM00). To this end we have optically characterized a large numerical aperture phase Fresnel lens (NA=0.64) designed for use at 369.5 nm, the principal fluorescence detection transition for Yb+ ions. A diffraction-limited spot w0=350+/-15 nm (1/e^2 waist) with mode quality M^2= 1.08+/-0.05 was measured with this PFL. From this we estimate the minimum expected free space coherent ion-photon coupling to be 0.64%, which is twice the best previous experimental measurement using a conventional multi-element lens. We also evaluate two techniques for improving the entanglement fidelity between the ion state and photon polarization with large numerical aperture lenses.
We investigate the dynamics of mixed-species ion crystals during transport between spatially distinct locations in a linear Paul trap in the diabatic regime. In a general mixed-species crystal, all degrees of freedom along the direction of transport are excited by an accelerating well, so unlike the case of same-species ions, where only the center-of-mass-mode is excited, several degrees of freedom have to be simultaneously controlled by the transport protocol. We design protocols that lead to low final excitations in the diabatic regime using invariant-based inverse-engineering for two different-species ions and also show how to extend this approach to longer mixed-species ion strings. Fast transport of mixed-species ion strings can significantly reduce the time overhead in certain architectures for scalable quantum information processing with trapped ions.
Quantum computers, much like their classical counterparts, will likely benefit from flexible qubit encodings that can be matched to different tasks. For trapped ion quantum processors, a common way to access multiple encodings is to use multiple, co-trapped atomic species. Here, we outline an alternative approach that allows flexible encoding capabilities in single-species systems through the use of long-lived metastable states as an effective, programmable second species. We describe the set of additional trapped ion primitives needed to enable this protocol and show that they are compatible with large-scale systems that are already in operation.
Due to inhomogeneous broadening, the absorption lines of rare-earth-ion dopands in crystals are many order of magnitudes wider than the homogeneous linewidths. Several ways have been proposed to use ions with different inhomogeneous shifts as qubit registers, and to perform gate operations between such registers by means of the static dipole coupling between the ions. In this paper we show that in order to implement high-fidelity quantum gate operations by means of the static dipole interaction, we require the participating ions to be strongly coupled, and that the density of such strongly coupled registers in general scales poorly with register size. Although this is critical to previous proposals which rely on a high density of functional registers, we describe architectures and preparation strategies that will allow scalable quantum computers based on rare-earth-ion doped crystals.
Quantum computation promises significant computational advantages over classical computation for some problems. However, quantum hardware suffers from much higher error rates than in classical hardware. As a result, extensive quantum error correction is required to execute a useful quantum algorithm. The decoder is a key component of the error correction scheme whose role is to identify errors faster than they accumulate in the quantum computer and that must be implemented with minimum hardware resources in order to scale to the regime of practical applications. In this work, we consider surface code error correction, which is the most popular family of error correcting codes for quantum computing, and we design a decoder micro-architecture for the Union-Find decoding algorithm. We propose a three-stage fully pipelined hardware implementation of the decoder that significantly speeds up the decoder. Then, we optimize the amount of decoding hardware required to perform error correction simultaneously over all the logical qubits of the quantum computer. By sharing resources between logical qubits, we obtain a 67% reduction of the number of hardware units and the memory capacity is reduced by 70%. Moreover, we reduce the bandwidth required for the decoding process by a factor at least 30x using low-overhead compression algorithms. Finally, we provide numerical evidence that our optimized micro-architecture can be executed fast enough to correct errors in a quantum computer.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا