Do you want to publish a course? Click here

Controlling quantum systems by embedded dynamical decoupling schemes

129   0   0.0 ( 0 )
 Added by Gernot Alber
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions.



rate research

Read More

Dephasing -- phase randomization of a quantum superposition state -- is a major obstacle for the realization of high fidelity quantum logic operations. Here, we implement a two-qubit Controlled-NOT gate using dynamical decoupling (DD), despite the gate time being more than one order of magnitude longer than the intrinsic coherence time of the system. For realizing this universal conditional quantum gate, we have devised a concatenated DD sequence that ensures robustness against imperfections of DD pulses that otherwise may destroy quantum information or interfere with gate dynamics. We compare its performance with three other types of DD sequences. These experiments are carried out using a well-controlled prototype quantum system -- trapped atomic ions coupled by an effective spin-spin interaction. The scheme for protecting conditional quantum gates demonstrated here is applicable to other physical systems, such as nitrogen vacancy centers, solid state nuclear magnetic resonance, and circuit quantum electrodynamics.
Realistic quantum computing is subjected to noise. A most important frontier in research of quantum computing is to implement noise-resilient quantum control over qubits. Dynamical decoupling can protect coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which automatically suppresses the noise effect. We designed and implemented a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelities of 0.91 and 0.88 were observed even with imperfect initial states. In the mean time, the qubit coherence time has been elongated by at least 30 folds. The design scheme does not require that the dynamical decoupling control commute with the qubit interaction and works for general systems. This work marks a step toward realistic quantum computing.
To implement reliable quantum information processing, quantum gates have to be protected together with the qubits from decoherence. Here we demonstrate experimentally on nitrogen-vacancy system that by using continuous wave dynamical decoupling method, not only the coherence time is prolonged by about 20 times, but also the quantum gates is protected for the duration of controlling time. This protocol shares the merits of retaining the superiority of prolonging the coherence time and at the same time easily combining with quantum logic tasks. It is expected to be useful in task where duration of quantum controlling exceeds far beyond the dephasing time.
Sensing the internal dynamics of individual nuclear spins or clusters of nuclear spins has recently become possible by observing the coherence decay of a nearby electronic spin: the weak magnetic noise is amplified by a periodic, multi-pulse decoupling sequence. However, it remains challenging to robustly infer underlying atomic-scale structure from decoherence traces in all but the simplest cases. We introduce Floquet spectroscopy as a versatile paradigm for analysis of these experiments, and argue it offers a number of general advantages. In particular, this technique generalises to more complex situations, offering physical insight in regimes of many-body dynamics, strong coupling and pulses of finite duration. As there is no requirement for resonant driving, the proposed spectroscopic approach permits physical interpretation of striking, but overlooked, coherence decay features in terms of the form of the avoided crossings of the underlying quasienergy eigenspectrum. This is exemplified by a set of diamond shaped features arising for transverse-field scans in the case of single-spin sensing by NV-centers in diamond. We investigate also applications for donors in silicon showing that the resulting tunable interaction strengths offer highly promising future sensors.
166 - P. Z. Zhao , X. Wu , D. M. Tong 2021
The main obstacles to the realization of high-fidelity quantum gates are the control errors arising from inaccurate manipulation of a quantum system and the decoherence caused by the interaction between the quantum system and its environment. Nonadiabatic holonomic quantum computation allows for high-speed implementation of whole-geometric quantum gates, making quantum computation robust against control errors. Dynamical decoupling provides an effective method to protect quantum gates against environment-induced decoherence, regardless of collective decoherence or independent decoherence. In this paper, we put forward a protocol of nonadiabatic holonomic quantum computation protected by dynamical decoupling . Due to the combination of nonadiabatic holonomic quantum computation and dynamical decoupling, our protocol not only possesses the intrinsic robustness against control errors but also protects quantum gates against environment-induced decoherence.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا