Do you want to publish a course? Click here

Dynamical decoupling based quantum sensing: Floquet spectroscopy

141   0   0.0 ( 0 )
 Added by Jacob Lang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Sensing the internal dynamics of individual nuclear spins or clusters of nuclear spins has recently become possible by observing the coherence decay of a nearby electronic spin: the weak magnetic noise is amplified by a periodic, multi-pulse decoupling sequence. However, it remains challenging to robustly infer underlying atomic-scale structure from decoherence traces in all but the simplest cases. We introduce Floquet spectroscopy as a versatile paradigm for analysis of these experiments, and argue it offers a number of general advantages. In particular, this technique generalises to more complex situations, offering physical insight in regimes of many-body dynamics, strong coupling and pulses of finite duration. As there is no requirement for resonant driving, the proposed spectroscopic approach permits physical interpretation of striking, but overlooked, coherence decay features in terms of the form of the avoided crossings of the underlying quasienergy eigenspectrum. This is exemplified by a set of diamond shaped features arising for transverse-field scans in the case of single-spin sensing by NV-centers in diamond. We investigate also applications for donors in silicon showing that the resulting tunable interaction strengths offer highly promising future sensors.



rate research

Read More

We study how dynamical decoupling (DD) pulse sequences can improve the reliability of quantum computers. We prove upper bounds on the accuracy of DD-protected quantum gates and derive sufficient conditions for DD-protected gates to outperform unprotected gates. Under suitable conditions, fault-tolerant quantum circuits constructed from DD-protected gates can tolerate stronger noise, and have a lower overhead cost, than fault-tolerant circuits constructed from unprotected gates. Our accuracy estimates depend on the dynamics of the bath that couples to the quantum computer, and can be expressed either in terms of the operator norm of the baths Hamiltonian or in terms of the power spectrum of bath correlations; we explain in particular how the performance of recursively generated concatenated pulse sequences can be analyzed from either viewpoint. Our results apply to Hamiltonian noise models with limited spatial correlations.
Realistic quantum computing is subjected to noise. A most important frontier in research of quantum computing is to implement noise-resilient quantum control over qubits. Dynamical decoupling can protect coherence of qubits. Here we demonstrate non-trivial quantum evolution steered by dynamical decoupling control, which automatically suppresses the noise effect. We designed and implemented a self-protected controlled-NOT gate on the electron spin of a nitrogen-vacancy centre and a nearby carbon-13 nuclear spin in diamond at room temperature, by employing an engineered dynamical decoupling control on the electron spin. Final state fidelities of 0.91 and 0.88 were observed even with imperfect initial states. In the mean time, the qubit coherence time has been elongated by at least 30 folds. The design scheme does not require that the dynamical decoupling control commute with the qubit interaction and works for general systems. This work marks a step toward realistic quantum computing.
Characteristic dips appear in the coherence traces of a probe qubit when dynamical decoupling (DD) is applied in synchrony with the precession of target nuclear spins, forming the basis for nanoscale nuclear magnetic resonance (NMR). The frequency of the microwave control pulses is chosen to match the qubit transition but this can be detuned from resonance by experimental errors, hyperfine coupling intrinsic to the qubit, or inhomogeneous broadening. The detuning acts as an additional static field which is generally assumed to be completely removed in Hahn echo and DD experiments. Here we demonstrate that this is not the case in the presence of finite pulse-durations, where a detuning can drastically alter the coherence response of the probe qubit, with important implications for sensing applications. Using the electronic spin associated with a nitrogen-vacancy centre in diamond as a test qubit system, we analytically and experimentally study the qubit coherence response under CPMG and XY8 dynamical decoupling control schemes in the presence of finite pulse-durations and static detunings. Most striking is the splitting of the NMR resonance under CPMG, whereas under XY8 the amplitude of the NMR signal is modulated. Our work shows that the detuning error must not be neglected when extracting data from quantum sensor coherence traces.
We present rigorous performance bounds for the optimal dynamical decoupling pulse sequence protecting a quantum bit (qubit) against pure dephasing. Our bounds apply under the assumption of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians. We show that if the total sequence time is fixed the optimal sequence can be used to make the distance between the protected and unperturbed qubit states arbitrarily small in the number of applied pulses. If, on the other hand, the minimum pulse interval is fixed and the total sequence time is allowed to scale with the number of pulses, then longer sequences need not always be advantageous. The rigorous bound may serve as testbed for approximate treatments of optimal decoupling in bounded models of decoherence.
Hybrid quantum devices expand the tools and techniques available for quantum sensing in various fields. Here, we experimentally demonstrate quantum sensing of the steady-state magnon population in a magnetostatic mode of a ferrimagnetic crystal. Dispersively coupling the magnetostatic mode to a superconducting qubit allows the detection of magnons using Ramsey interferometry with a sensitivity on the order of $10^{-3}$ $text{magnons}/sqrt{text{Hz}}$. The protocol is based on dissipation as dephasing via fluctuations in the magnetostatic mode reduces the qubit coherence proportionally to the number of magnons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا