No Arabic abstract
In this paper, we discuss the minimal number of observables, where expectation values at some time instant determine the trajectory of a d-level quantum system (qudit) governed by the Gaussian semigroup. We assume that the macroscopic information about the system in question is given by the mean values of n selfadjoint operators $Q_1,...,Q_n$ at some time instants $t_1<t_2<...<t_r$, where $n<d^2-1$ and $rleq {rm deg} mu(lambda,bBBL)$. Here $mu(lambda,bBBL)$ stands for the minimal polynomial of the generator of the Gaussian flow.
Quantum tomography makes it possible to obtain comprehensive information about certain logical elements of a quantum computer. In this regard, it is a promising tool for debugging quantum computers. The practical application of tomography, however, is still limited by systematic measurement errors. Their main source are errors in the quantum state preparation and measurement procedures. In this work, we investigate the possibility of suppressing these errors in the case of ion-based qudits. First, we will show that one can construct a quantum measurement protocol that contains no more than a single quantum operation in each measurement circuit. Such a protocol is more robust to errors than the measurements in mutually unbiased bases, where the number of operations increases in proportion to the square of the qudit dimension. After that, we will demonstrate the possibility of determining and accounting for the state initialization and readout errors. Together, the measures described can significantly improve the accuracy of quantum tomography of real ion-based qudits.
Quantum state tomography (QST) is an essential tool for characterizing an unknown quantum state. Recently, QST has been performed for entangled qudits based on orbital angular momentum, time-energy uncertainty, and frequency bins. Here, we propose a QST for time-bin qudits, with which the number of measurement settings scales linearly with dimension $d$. Using the proposed scheme, we performed QST for a four-dimensional time-bin maximally entangled state with 16 measurement settings. We successfully reconstructed the density matrix of the entangled qudits, with which the average fidelity of the state was calculated to be 0.950.
Annealing approach to quantum tomography is theoretically proposed. First, based on the maximum entropy principle, we introduce classical parameters to combine quantum models (or quantum states) given a prior for potentially representing the unknown target state. Then, we formulate the quantum tomography as an optimization problem on the classical parameters, by employing relative entropy of the parametrized state with the target state as the objective function to be minimized. We show that the objective function is physically implementable, in a theoretical sense at least, as an effective Hamiltonian to be induced by physical interactions of the system with environment systems being prepared in the target state. Corollary, applying quantum annealing to the effective Hamiltonian, we can execute quantum tomography by obtaining the ground state that gives the optimal parameters.
In trapped-ion quantum information processing, interactions between spins (qubits) are mediated by collective modes of motion of an ion crystal. While there are many different experimental strategies to design such interactions, they all face both technical and fundamental limitations to the achievable coherent interaction strength. In general, obtaining strong interactions and fast gates is an ongoing challenge. Here, we extend previous work [Phys. Rev. Lett. 112, 030501 (2019)] and present a general strategy for enhancing the interaction strengths in trapped-ion systems via parametric amplification of the ions motion. Specifically, we propose a stroboscopic protocol using alternating applications of parametric amplification and spin-motion coupling. In comparison with the previous work, we show that the current protocol can lead to larger enhancements in the coherent interaction that increase exponentially with the gate time.
We show a significant reduction of the number of quantum operations and the improvement of the circuit depth for the realization of the Toffoli gate by using qudits. This is done by establishing a general relation between the dimensionality of qudits and their topology of connections for a scalable multi-qudit processor, where higher qudit levels are used for substituting ancillas. The suggested model is of importance for the realization of quantum algorithms and as a method of quantum error correction codes for single-qubit operations.