Do you want to publish a course? Click here

Annealing Approach to Quantum Tomography

60   0   0.0 ( 0 )
 Added by Kentaro Imafuku
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Annealing approach to quantum tomography is theoretically proposed. First, based on the maximum entropy principle, we introduce classical parameters to combine quantum models (or quantum states) given a prior for potentially representing the unknown target state. Then, we formulate the quantum tomography as an optimization problem on the classical parameters, by employing relative entropy of the parametrized state with the target state as the objective function to be minimized. We show that the objective function is physically implementable, in a theoretical sense at least, as an effective Hamiltonian to be induced by physical interactions of the system with environment systems being prepared in the target state. Corollary, applying quantum annealing to the effective Hamiltonian, we can execute quantum tomography by obtaining the ground state that gives the optimal parameters.



rate research

Read More

Classical models with complex energy landscapes represent a perspective avenue for the near-term application of quantum simulators. Until now, many theoretical works studied the performance of quantum algorithms for models with a unique ground state. However, when the classical problem is in a so-called clustering phase, the ground state manifold is highly degenerate. As an example, we consider a 3-XORSAT model defined on simple hypergraphs. The degeneracy of classical ground state manifold translates into the emergence of an extensive number of $Z_2$ symmetries, which remain intact even in the presence of a quantum transverse magnetic field. We establish a general duality approach that restricts the quantum problem to a given sector of conserved $Z_2$ charges and use it to study how the outcome of the quantum adiabatic algorithm depends on the hypergraph geometry. We show that the tree hypergraph which corresponds to a classically solvable instance of the 3-XORSAT problem features a constant gap, whereas the closed hypergraph encounters a second-order phase transition with a gap vanishing as a power-law in the problem size. The duality developed in this work provides a practical tool for studies of quantum models with classically degenerate energy manifold and reveals potential connections between glasses and gauge theories.
Quantum computation has been growing rapidly in both theory and experiments. In particular, quantum computing devices with a large number of qubits have been developed by IBM, Google, IonQ, and others. The current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices, and so approaches to validate quantum processing on these quantum devices are needed. One of the most common ways of validation for an n-qubit quantum system is quantum tomography, which tries to reconstruct a quantum systems density matrix by a complete set of observables. However, the inherent noise in the quantum systems and the intrinsic limitations poses a critical challenge to precisely know the actual measurement operators which make quantum tomography impractical in experiments. Here, we propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables based on the available mean measurement data. This can then be used to reconstruct the density matrix with high fidelity even though the results for some observables are missing. Of additional contexts, a practical approach to the inference of the quantum mechanical state using only partial information is also needed.
In this paper, we discuss the minimal number of observables, where expectation values at some time instant determine the trajectory of a d-level quantum system (qudit) governed by the Gaussian semigroup. We assume that the macroscopic information about the system in question is given by the mean values of n selfadjoint operators $Q_1,...,Q_n$ at some time instants $t_1<t_2<...<t_r$, where $n<d^2-1$ and $rleq {rm deg} mu(lambda,bBBL)$. Here $mu(lambda,bBBL)$ stands for the minimal polynomial of the generator of the Gaussian flow.
165 - Satoshi Morita 2007
New annealing schedules for quantum annealing are proposed based on the adiabatic theorem. These schedules exhibit faster decrease of the excitation probability than a linear schedule. To derive this conclusion, the asymptotic form of the excitation probability for quantum annealing is explicitly obtained in the limit of long annealing time. Its first-order term, which is inversely proportional to the square of the annealing time, is shown to be determined only by the information at the initial and final times. Our annealing schedules make it possible to drop this term, thus leading to a higher order (smaller) excitation probability. We verify these results by solving numerically the time-dependent Schrodinger equation for small size systems
We present a general error-correcting scheme for quantum annealing that allows for the encoding of a logical qubit into an arbitrarily large number of physical qubits. Given any Ising model optimization problem, the encoding replaces each logical qubit by a complete graph of degree $C$, representing the distance of the error-correcting code. A subsequent minor-embedding step then implements the encoding on the underlying hardware graph of the quantum annealer. We demonstrate experimentally that the performance of a D-Wave Two quantum annealing device improves as $C$ grows. We show that the performance improvement can be interpreted as arising from an effective increase in the energy scale of the problem Hamiltonian, or equivalently, an effective reduction in the temperature at which the device operates. The number $C$ thus allows us to control the amount of protection against thermal and control errors, and in particular, to trade qubits for a lower effective temperature that scales as $C^{-eta}$, with $eta leq 2$. This effective temperature reduction is an important step towards scalable quantum annealing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا