Do you want to publish a course? Click here

A Quantum Adiabatic Algorithm for Factorization and Its Experimental Implementation

358   0   0.0 ( 0 )
 Added by Jiangfeng Du
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an adiabatic quantum algorithm capable of factorizing numbers, using fewer qubits than Shors algorithm. We implement the algorithm in an NMR quantum information processor and experimentally factorize the number 21. Numerical simulations indicate that the running time grows only quadratically with the number of qubits.



rate research

Read More

We report the realization of a nuclear magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic quantum algorithms offer new insight into how quantum resources can be used to solve hard problems. This experiment uses a particularly well suited three quantum bit molecule and was made possible by introducing a technique that encodes general instances of the given optimization problem into an easily applicable Hamiltonian. Our results indicate an optimal run time of the adiabatic algorithm that agrees well with the prediction of a simple decoherence model.
124 - Nanyang Xu , Jin Zhu , Xinhua Peng 2008
Grovers algorithm has achieved great success. But quantum search algorithms still are not complete algorithms because of Grovers Oracle. We concerned on this problem and present a new quantum search algorithm in adiabatic model without Oracle. We analyze the general difficulties in quantum search algorithms and show how to solve them in the present algorithm. As well this algorithm could deal with both single-solution and multi-solution searches without modification. We also implement this algorithm on NMR quantum computer. It is the first experiment which perform a real quantum database search rather than a marked-state search.
Quantum adiabatic passages can be greatly accelerated by a suitable control field, called a counter-diabatic field, which varies during the scan through resonance. Here, we implement this technique on the electron spin of a single nitrogen-vacancy center in diamond. We demonstrate t
Quantum integer factorization is a potential quantum computing solution that may revolutionize cryptography. Nevertheless, a scalable and efficient quantum algorithm for noisy intermediate-scale quantum computers looks far-fetched. We propose an alternative factorization method, within the digitized-adiabatic quantum computing paradigm, by digitizing an adiabatic quantum factorization algorithm enhanced by shortcuts to adiabaticity techniques. We find that this fast factorization algorithm is suitable for available gate-based quantum computers. We test our quantum algorithm in an IBM quantum computer with up to six qubits, surpassing the performance of the more commonly used factorization algorithms on the long way towards quantum advantage.
Using nuclear magnetic resonance (NMR) techniques with three-qubit sample, we have experimentally implemented the highly structured algorithm for the 1-SAT problem proposed by Hogg. A simplified temporal averaging procedure was employed to the three-qubit spin pseudo-pure state. The algorithm was completed with only a single evaluation of structure of the problem and the solutions were found with probability 100%, which outperform both unstructured quantum and the best classical search algorithm.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا