Do you want to publish a course? Click here

Spatial entanglement of twin quantum images

93   0   0.0 ( 0 )
 Added by Patrick Navez
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that spatial entanglement of two twin images obtained by parametric down-conversion is complete, i.e. concerns both amplitude and phase. This is realised through a homodyne detection of these images which allows for measurement of the field quadrature components. EPR correlations are shown to exist between symmetrical pixels of the two images. The best possible correlation is obtained by adjusting the phase of the local oscillator field (LO) in the area of maximal amplification. The results for quadrature components hold unchanged even in absence of any input image i.e. for pure parametric fluorescence. In this case they are not related to intensity and phase fluctuations.

rate research

Read More

59 - Ivan P. Christov 2021
The time dependent quantum Monte Carlo method for fermions is introduced and applied for calculation of entanglement of electrons in one-dimensional quantum dots with several spin-polarized and spin-compensated electron configurations. The rich statistics of wave functions provided by the method allows one to build reduced density matrices for each electron and to quantify the spatial entanglement using measures such as quantum entropy by treating the electrons as identical or distinguishable particles. Our results indicate that the spatial entanglement in parallel-spin configurations is rather small and it is determined mostly by the quantum nonlocality introduced by the ground state. By contrast, in the spin-compensated case the outermost opposite-spin electrons interact like bosons which prevails their entanglement, while the inner shell electrons remain largely at their Hartree-Fock geometry. Our findings are in a close correspondence with the numerically exact results, wherever such comparison is possible.
192 - D. Daems , N. J. Cerf 2010
We present a simple model together with its physical implementation which allows one to generate multipartite entanglement between several spatial modes of the electromagnetic field. It is based on parametric down-conversion with N pairs of symmetrically-tilted plane waves serving as a pump. The characteristics of this spatial entanglement are investigated in the cases of zero as well as nonzero phase mismatch. Furthermore, the phenomenon of entanglement localization in just two spatial modes is studied in detail and results in an enhancement of the entanglement by a factor square root of N.
147 - M. Cramer , A. Bernard , N. Fabbri 2013
Entanglement is a fundamental resource for quantum information processing, occurring naturally in many-body systems at low temperatures. The presence of entanglement and, in particular, its scaling with the size of system partitions underlies the complexity of quantum many-body states. The quantitative estimation of entanglement in many-body systems represents a major challenge as it requires either full state tomography, scaling exponentially in the system size, or the assumption of unverified system characteristics such as its Hamiltonian or temperature. Here we adopt recently developed approaches for the determination of rigorous lower entanglement bounds from readily accessible measurements and apply them in an experiment of ultracold interacting bosons in optical lattices of approximately $10^5$ sites. We then study the behaviour of spatial entanglement between the sites when crossing the superfluid-Mott insulator transition and when varying temperature. This constitutes the first rigorous experimental large-scale entanglement quantification in a scalable quantum simulator.
Twin-Field (TF) quantum key distribution (QKD) is a major candidate to be the new benchmark for far-distance QKD implementations, since its secret key rate can overcome the repeaterless bound by means of a simple interferometric measurement. Many variants of the original protocol have been recently proven to be secure. Here, we focus on the TF-QKD type protocol proposed by Curty et al [preprint arXiv:1807.07667], which can provide a high secret key rate and whose practical feasibility has been demonstrated in various recent experiments. The security of this protocol relies on the estimation of certain detection probabilities (yields) through the decoy-state technique. Analytical bounds on the relevant yields have been recently derived assuming that both parties use the same set of decoy intensities, thus providing sub-optimal key rates in asymmetric-loss scenarios. Here we derive new analytical bounds when the parties use either three or four independent decoy intensity settings each. With the new bounds we optimize the protocols performance in asymmetric-loss scenarios and show that the protocol is robust against uncorrelated intensity fluctuations affecting the parties lasers.
Twin-Field Quantum Key Distribution(TF-QKD) protocol and its variants, such as Phase-Matching QKD(PM-QKD), sending or not QKD(SNS-QKD) and No Phase Post-Selection TF-QKD(NPP-TFQKD), are very promising for long-distance applications. However, there are still some gaps between theory and practice in these protocols. Concretely, a finite-key size analysis is still missing, and the intensity fluctuations are not taken into account. To address the finite-key size effect, we first give the key rate of NPP-TFQKD against collective attack in finite-key size region and then prove it can be against coherent attack. To deal with the intensity fluctuations, we present an analytical formula of 4-intensity decoy state NPP-TFQKD and a practical intensity fluctuation model. Finally, through detailed simulations, we show NPP-TFQKD can still keep its superiority of high key rate and long achievable distance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا