We present a simple model together with its physical implementation which allows one to generate multipartite entanglement between several spatial modes of the electromagnetic field. It is based on parametric down-conversion with N pairs of symmetrically-tilted plane waves serving as a pump. The characteristics of this spatial entanglement are investigated in the cases of zero as well as nonzero phase mismatch. Furthermore, the phenomenon of entanglement localization in just two spatial modes is studied in detail and results in an enhancement of the entanglement by a factor square root of N.
Entangled systems in experiments may be lost or offline in distributed quantum information processing. This inspires a general problem to characterize quantum operations which result in breaking of entanglement or not. Our goal in this work is to solve this problem both in single entanglement and network scenarios. We firstly propose a local model for characterizing all entangled states that are breaking for losing particles. This implies a simple criterion for witnessing single entanglement such as generalized GHZ states and Dicke states. It further provides an efficient witness for characterizing entangled quantum networks depending mainly on the connectivity of network configurations such as $k$-independent quantum networks, completely connected quantum networks, and $k$-connected quantum networks. These networks are universal resources for measurement-based quantum computations. The strong nonlocality can be finally verified by using nonlinear inequalities. These results show distinctive features of both single entangled systems and entangled quantum networks.
We analyze the entanglement distribution and the two-qubit residual entanglement in multipartite systems. For a composite system consisting of two cavities interacting with independent reservoirs, it is revealed that the entanglement evolution is restricted by an entanglement monogamy relation derived here. Moreover, it is found that the initial cavity-cavity entanglement evolves completely to the genuine four-partite cavities-reservoirs entanglement in the time interval between the sudden death of cavity-cavity entanglement and the birth of reservoir-reservoir entanglement. In addition, we also address the relationship between the genuine block-block entanglement form and qubit-block form in the interval.
The generation of genuine multipartite entangled states is challenging in practice. Here we explore a new route to this task, via autonomous entanglement engines which use only incoherent coupling to thermal baths and time-independent interactions. We present a general machine architecture, which allows for the generation of a broad range of multipartite entangled states in a heralded manner. Specifically, given a target multiple-qubit state, we give a sufficient condition ensuring that it can be generated by our machine. We discuss the cases of Greenberger-Horne-Zeilinger, Dicke and cluster states in detail. These results demonstrate the potential of purely thermal resources for creating multipartite entangled states useful for quantum information processing.
The standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipartite entanglement can, by itself, generate genuine $k$-partite entangled states for any $k$. We propose an alternative definition for genuine multipartite entanglement, whereby a quantum state is genuinely network $k$-entangled if it cannot be produced by applying local trace-preserving maps over several $k$-partite states distributed among the parties, even with the aid of global shared randomness. We provide analytic and numerical witnesses of genuine network entanglement, and we reinterpret many past quantum experiments as demonstrations of this feature.
The quantum entanglement as one of very important resources has been widely used in quantum information processing. In this work, we present a new kind of genuine multipartite entanglement. It is derived from special geometric feature of entangled systems compared with quantum multisource networks. We prove that any symmetric entangled pure state shows stronger nonlocality than the genuinely multipartite nonlocality in the biseparable model. Similar results hold for other entangled pure states with local dimensions no larger than $3$. We further provide computational conditions for witnessing the new nonlocality of noisy states. These results suggest that the present model is useful characterizing a new kind of generic quantum entanglement.