No Arabic abstract
A variety of physical, social and biological systems generate complex fluctuations with correlations across multiple time scales. In physiologic systems, these long-range correlations are altered with disease and aging. Such correlated fluctuations in living systems have been attributed to the interaction of multiple control systems; however, the mechanisms underlying this behavior remain unknown. Here, we show that a number of distinct classes of dynamical behaviors, including correlated fluctuations characterized by $1/f$-scaling of their power spectra, can emerge in networks of simple signaling units. We find that under general conditions, complex dynamics can be generated by systems fulfilling two requirements: i) a ``small-world topology and ii) the presence of noise. Our findings support two notable conclusions: first, complex physiologic-like signals can be modeled with a minimal set of components; and second, systems fulfilling conditions (i) and (ii) are robust to some degree of degradation, i.e., they will still be able to generate $1/f$-dynamics.
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). The principal features of the eukaryotic evolution of the cytoskeleton motor protein myosin-1 parallel those of actin and tubulin, but also show striking differences connected to its dynamical function. Optimized (long) hydropathic waves characterize the molecular level Darwinian evolution towards optimized functionality (self-organized criticality). The N-terminal and central domains of myosin-1 have evolved in eukaryotes at different rates, with the central domain hydropathic extrema being optimally active in humans. A test shows that hydropathic scaling can yield accuracies of better than 1% near optimized functionality. Evolution towards synchronized level extrema is connected to a special function of Mys-1 in humans involving Golgi complexes.
We investigate the possibility of extending the notion of temperature in a stochastic model for the RNA/protein folding driven out of equilibrium. We simulate the dynamics of a small RNA hairpin subject to an external pulling force, which is time-dependent. First, we consider a fluctuation-dissipation relation (FDR) whereby we verify that various effective temperatures can be obtained for different observables, only when the slowest intrinsic relaxation timescale of the system regulates the dynamics of the system. Then, we introduce a different nonequilibrium temperature, which is defined from the rate of heat exchanged with a weakly-interacting thermal bath. Notably, this kinetic temperature can be defined for any frequency of the external switching force. We also discuss and compare the behavior of these two emerging parameters, by discriminating the time-delayed nature of the FDR temperature from the instantaneous character of the kinetic temperature. The validity of our numerics are corroborated by a simple 4-state Markov model which describes the long-time behaviour of the RNA molecule.
The knowledge of the Free Energy Landscape topology is the essential key to understand many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape answering questions such as how many meta-stable conformers are, how the hierarchical relationship among them is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations, the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the Conformational Markov Network, relevant kinetic magnitudes as dwell times or rate constants, and the hierarchical relationship among basins, complete the global picture of the landscape. We show the power of the analysis studying a toy model of a funnel-like potential and computing efficiently the conformers of a short peptide, the dialanine, paving the way to a systematic study of the Free Energy Landscape in large peptides.
Living neuronal networks in dissociated neuronal cultures are widely known for their ability to generate highly robust spatiotemporal activity patterns in various experimental conditions. These include neuronal avalanches satisfying the power scaling law and thereby exemplifying self-organized criticality in living systems. A crucial question is how these patterns can be explained and modeled in a way that is biologically meaningful, mathematically tractable and yet broad enough to account for neuronal heterogeneity and complexity. Here we propose a simple model which may offer an answer to this question. Our derivations are based on just few phenomenological observations concerning input-output behavior of an isolated neuron. A distinctive feature of the model is that at the simplest level of description it comprises of only two variables, a network activity variable and an exogenous variable corresponding to energy needed to sustain the activity and modulate the efficacy of signal transmission. Strikingly, this simple model is already capable of explaining emergence of network spikes and bursts in developing neuronal cultures. The model behavior and predictions are supported by empirical observations and published experimental evidence on cultured neurons behavior exposed to oxygen and energy deprivation. At the larger, network scale, introduction of the energy-dependent regulatory mechanism enables the network to balance on the edge of the network percolation transition. Network activity in this state shows population bursts satisfying the scaling avalanche conditions. This network state is self-sustainable and represents a balance between global network-wide processes and spontaneous activity of individual elements.