No Arabic abstract
We investigate the possibility of extending the notion of temperature in a stochastic model for the RNA/protein folding driven out of equilibrium. We simulate the dynamics of a small RNA hairpin subject to an external pulling force, which is time-dependent. First, we consider a fluctuation-dissipation relation (FDR) whereby we verify that various effective temperatures can be obtained for different observables, only when the slowest intrinsic relaxation timescale of the system regulates the dynamics of the system. Then, we introduce a different nonequilibrium temperature, which is defined from the rate of heat exchanged with a weakly-interacting thermal bath. Notably, this kinetic temperature can be defined for any frequency of the external switching force. We also discuss and compare the behavior of these two emerging parameters, by discriminating the time-delayed nature of the FDR temperature from the instantaneous character of the kinetic temperature. The validity of our numerics are corroborated by a simple 4-state Markov model which describes the long-time behaviour of the RNA molecule.
We construct a minimalist model of RNA secondary-structure formation and use it to study the mapping from sequence to structure. There are strong, qualitative differences between two-letter and four or six-letter alphabets. With only two kinds of bases, there are many alternate folding configurations, yielding thermodynamically stable ground-states only for a small set of structures of high designability, i.e., total number of associated sequences. In contrast, sequences made from four bases, as found in nature, or six bases have far fewer competing folding configurations, resulting in a much greater average stability of the ground state.
We introduce a scheme for deriving an optimally-parametrised Langevin dynamics of few collective variables from data generated in molecular dynamics simulations. The drift and the position-dependent diffusion profiles governing the Langevin dynamics are expressed as explicit averages over the input trajectories. The proposed strategy is applicable to cases when the input trajectories are generated by subjecting the system to a external time-dependent force (as opposed to canonically-equilibrated trajectories). Secondly, it provides an explicit control on the statistical uncertainty of the drift and diffusion profiles. These features lend to the possibility of designing the external force driving the system so to maximize the accuracy of the drift and diffusions profile throughout the phase space of interest. Quantitative criteria are also provided to assess a posteriori the satisfiability of the requisites for applying the method, namely the Markovian character of the stochastic dynamics of the collective variables.
A 1D model of interacting particles moving over a periodic substrate and in a position dependent temperature profile is considered. When the substrate and the temperature profile are spatially asymmetric a center-of-mass velocity develops, corresponding to a directed transport of the chain. This autonomous system can thus transform heath currents into motion. The model parameters can be tuned such that the particles exhibit a crossover from an ordered configuration on the substrate to a disordered one, the maximal motor effect being reached in such a disordered phase. In this case the manybody motor outperforms the single motor system, showing the great importance of collective effects in microscopic thermal devices. Such collective effects represent thus a free resource that can be exploited to enhance the dynamic and thermodynamic performances in microscopic machines.
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill-defined. Here we draw a connection between the atomistic description of a diffuse solid- liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.
We review the general aspects of the concept of temperature in equilibrium and non-equilibrium statistical mechanics. Although temperature is an old and well-established notion, it still presents controversial facets. After a short historical survey of the key role of temperature in thermodynamics and statistical mechanics, we tackle a series of issues which have been recently reconsidered. In particular, we discuss different definitions and their relevance for energy fluctuations. The interest in such a topic has been triggered by the recent observation of negative temperatures in condensed matter experiments. Moreover, the ability to manipulate systems at the micro and nano-scale urges to understand and clarify some aspects related to the statistical properties of small systems (as the issue of temperatures fluctuations). We also discuss the notion of temperature in a dynamical context, within the theory of linear response for Hamiltonian systems at equilibrium and stochastic models with detailed balance, and the generalised fluctuation-response relations, which provide a hint for an extension of the definition of temperature in far-from-equilibrium systems. To conclude we consider non-Hamiltonian systems, such as granular materials, turbulence and active matter, where a general theoretical framework is still lacking.