Do you want to publish a course? Click here

Are theoretical results Results?

84   0   0.0 ( 0 )
 Added by Raymond Goldstein
 Publication date 2018
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Yes.



rate research

Read More

104 - J. C. Phillips 2020
Cytoskeletons are self-organized networks based on polymerized proteins: actin, tubulin, and driven by motor proteins, such as myosin, kinesin and dynein. Their positive Darwinian evolution enables them to approach optimized functionality (self-organized criticality). The principal features of the eukaryotic evolution of the cytoskeleton motor protein myosin-1 parallel those of actin and tubulin, but also show striking differences connected to its dynamical function. Optimized (long) hydropathic waves characterize the molecular level Darwinian evolution towards optimized functionality (self-organized criticality). The N-terminal and central domains of myosin-1 have evolved in eukaryotes at different rates, with the central domain hydropathic extrema being optimally active in humans. A test shows that hydropathic scaling can yield accuracies of better than 1% near optimized functionality. Evolution towards synchronized level extrema is connected to a special function of Mys-1 in humans involving Golgi complexes.
A variety of physical, social and biological systems generate complex fluctuations with correlations across multiple time scales. In physiologic systems, these long-range correlations are altered with disease and aging. Such correlated fluctuations in living systems have been attributed to the interaction of multiple control systems; however, the mechanisms underlying this behavior remain unknown. Here, we show that a number of distinct classes of dynamical behaviors, including correlated fluctuations characterized by $1/f$-scaling of their power spectra, can emerge in networks of simple signaling units. We find that under general conditions, complex dynamics can be generated by systems fulfilling two requirements: i) a ``small-world topology and ii) the presence of noise. Our findings support two notable conclusions: first, complex physiologic-like signals can be modeled with a minimal set of components; and second, systems fulfilling conditions (i) and (ii) are robust to some degree of degradation, i.e., they will still be able to generate $1/f$-dynamics.
In this review we provide an organized summary of the theoretical and computational results which are available for polymers subject to spatial or topological constraints. Because of the interdisciplinary character of the topic, we provide an accessible, non-specialist introduction to the main topological concepts, polymer models, and theoretical/computational methods used to investigate dense and entangled polymer systems. The main body of our review deals with: (i) the effect that spatial confinement has on the equilibrium topological entanglement of one or more polymer chains and (ii) the metric and entropic properties of polymer chains with fixed topological state. These problems have important technological applications and implications for the life-sciences. Both aspects, especially the latter, are amply covered. A number of selected open problems are finally highlighted.
The ongoing effort to detect and characterize physical entanglement in biopolymers has so far established that knots are present in many globular proteins and also abound in viral DNA packaged inside bacteriophages. RNA molecules, on the other hand, have not yet been systematically screened for the occurrence of physical knots. We have accordingly undertaken the systematic profiling of the ~6,000 RNA structures present in the protein data bank. The search identified no more than three deeply-knotted RNA molecules. These are ribosomal RNAs solved by cryo-em and consist of about 3,000 nucleotides. Compared to the case of proteins and viral DNA, the observed incidence of RNA knots is therefore practically negligible. This suggests that either evolutionary selection, or thermodynamic and kinetic folding mechanisms act towards minimizing the entanglement of RNA to an extent that is unparalleled by other types of biomolecules. The properties of the three observed RNA knotting patterns provide valuable clues for designing RNA sequences capable of self-tying in a twist-knot fold.
497 - F. C. Porter 2011
Combining measurements which have theoretical uncertainties is a delicate matter, due to an unclear statistical basis. We present an algorithm based on the notion that a theoretical uncertainty represents an estimate of bias.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا