Do you want to publish a course? Click here

The Dynamics of Platinum Precipitation in an Ion Exchange Membrane

192   0   0.0 ( 0 )
 Added by Vadim Atrazhev V.
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microscopy of polymer electrolyte membranes that have undergone operation under fuel cell conditions, have revealed a well defined band of platinum in the membrane. Here, we propose a physics based model that captures the mechanism of platinum precipitation in the polymer electrolyte membrane. While platinum is observed throughout the membrane, the preferential growth of platinum at the band of platinum is dependent on the electrochemical potential distribution in the membrane. In this paper, the location of the platinum band is calculated as a function of the gas concentration at the cathode and anode, gas diffusion coefficients and solubility constants of the gases in the membrane, which are functions of relative humidity. Under H2/N2 conditions the platinum band is located near the cathode-membrane interface, as the oxygen concentration in the cathode gas stream increases and/or the hydrogen concentration in the anode gas stream decreases, the band moves towards the anode. The model developed in this paper agrees with the set of experimental data on the platinum band location and the platinum particle distribution and size.



rate research

Read More

We introduce a novel approach for a fully quantum description of coupled electron-ion systems from first principles. It combines the variational quantum Monte Carlo (QMC) solution of the electronic part with the path integral (PI) formalism for the quantum nuclear dynamics. On the one hand, the PI molecular dynamics includes nuclear quantum effects by adding a set of fictitious classical particles (beads) aimed at reproducing nuclear quantum fluctuations via a harmonic kinetic term. On the other hand, variational QMC can provide Born-Oppenheimer (BO) potential energy surfaces with a precision comparable to the most advanced post Hartree-Fock approaches, and with a favorable scaling with the system size. To deal with the intrinsic QMC noise, we generalize the PI molecular dynamics using a Langevin thermostat correlated according to the covariance matrix of QMC nuclear forces. The variational parameters of the QMC wave function are evolved during the nuclear dynamics, such that the BO potential energy surface is unbiased. Statistical errors on the wave function parameters are reduced by resorting to bead grouping average, which we show to be accurate and well controlled. Our general algorithm relies on a Trotter breakup between the dynamics driven by ionic forces and the one set by the harmonic interbead couplings. The latter is exactly integrated even in presence of the Langevin thermostat, thanks to the mapping onto an Ornstein-Uhlenbeck process. This framework turns out to be very efficient also in the case of deterministic ionic forces. The new implementation is validated on the Zundel ion by direct comparison with standard PI Langevin dynamics calculations made with a coupled cluster potential energy surface. Nuclear quantum effects are confirmed to be dominant over thermal effects well beyond room temperature giving the excess proton an increased mobility by quantum tunneling.
In this paper, we discuss critical aspects of the mechanisms and features of polymer proton exchange membrane (PEM) degradation in low-temperature H2/O2 fuel cell. In this paper, we focused on chemical mechanism of OH radical generation and their distribution in operational fuel cell. According to the current concept, free radicals are generated from hydrogen and oxygen crossover gases at the surface of Pt particles that precipitated in the membrane. We explicitly calculate Pt precipitation rate and electrochemical potential distribution in the membrane that controls it. Based on radical generation rate and Pt distribution we calculate degradation rate of the membrane taking advantage of simple kinetics equations.
73 - Behrouz Behdani 2021
This study focuses on comparing the individual polymer chain dynamics in an entangled polymeric liquid under different shear and extension rates. Polymer chains under various shear rates and extension rates were simulated using a stochastic-tube model [J. Rheol. 56: 1057 (2012)]. We developed a Matlab code to visualize and analyze the simulated configurations from the stochastic-tube model. We introduced new variables to determine how the extent of linearity changes with time for different shear rates, which is more useful than a typical end-to-end distance analysis. We identified whether the polymer chains undergo a tumbling rotation (slight elongation not accompanying contraction) or flipping rotation (elongation accompanying contraction). The simulation results indicate that the polymer chains exhibit a significant tendency to elongate at higher shear rates and occasionally experience flipping, while lower shear rates tend to exhibit very frequent tumbling. Furthermore, no rotations were observed under extensional flows. These results help clarifying uncertainty of previously proposed polymer deformation mechanisms of the convective constraint release and the configuration-dependent friction coefficient.
A carbon corrosion model is developed based on the formation of surface oxides on carbon and platinum of the polymer electrolyte membrane fuel cell electrode. The model predicts the rate of carbon corrosion under potential hold and potential cycling conditions. The model includes the interaction of carbon surface oxides with transient species like OH radicals to explain observed carbon corrosion trends under normal PEM fuel cell operating conditions. The model prediction agrees qualitatively with the experimental data supporting the hypothesis that the interplay of surface oxide formation on carbon and platinum is the primary driver of carbon corrosion.
Rechargeable lithium ion batteries are an attractive alternative power source for a wide variety of applications. To optimize their performances, a complete description of the solvation properties of the ion in the electrolyte is crucial. A comprehensive understanding at the nanoscale of the solvation structure of lithium ions in nonaqueous carbonate electrolytes is, however, still unclear. We have measured by femtosecond vibrational spectroscopy the orientational correlation time of the CO stretching mode of Li+-bound and Li+-unbound ethylene carbonate molecules, in LiBF4, LiPF6, and LiClO4 ethylene carbonate solutions with different concentrations. Surprisingly, we have found that the coordination number of ethylene carbonate in the first solvation shell of Li+ is only two, in all solutions with concentrations higher than 0.5 M. Density functional theory calculations indicate that the presence of anions in the first coordination shell modifies the generally accepted tetrahedral structure of the complex, allowing only two EC molecules to coordinate to Li+ directly. Our results demonstrate for the first time, to the best of our knowledge, the anion influence on the overall structure of the first solvation shell of the Li+ ion. The formation of such a cation/solvent/anion complex provides a rational explanation for the ionic conductivity drop of lithium/carbonate electrolyte solutions at high concentrations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا