Do you want to publish a course? Click here

Bit-strings and other modifications of Viviane model for language competition

194   0   0.0 ( 0 )
 Added by Dietrich Stauffer
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

The language competition model of Viviane de Oliveira et al is modified by associating with each language a string of 32 bits. Whenever a language changes in this Viviane model, also one randomly selected bit is flipped. If then only languages with different bit-strings are counted as different, the resulting size distribution of languages agrees with the empirically observed slightly asymmetric log-normal distribution. Several other modifications were also tried but either had more free parameters or agreed less well with reality.



rate research

Read More

340 - Maria Markosova 2007
The phenomenon of human language is widely studied from various points of view. It is interesting not only for social scientists, antropologists or philosophers, but also for those, interesting in the network dynamics. In several recent papers word web, or language as a graph has been investigated. In this paper I revise recent studies of syntactical word web. I present a model of growing network in which such processes as node addition, edge rewiring and new link creation are taken into account. I argue, that this model is a satisfactory minimal model explaining measured data.
Systems with simultaneous cooperation and competition among the elements are ubiquitous. In spite of their practical importance, knowledge on the evolution mechanism of this class of complex system is still very limit. In this work, by conducting extensive empirical survey to a large number of cooperation-competition systems which cover wide categories and contain the information of network topology, cooperation-competition gain, and the evolution time, we try to get some insights to the universal mechanism of their evolutions. Empirical investigations show that the distributions of the cooperation-competition gain interpolates between power law function and exponential function. Particularly, we found that the cooperation-competition systems with longer evolution durations tend to have more heterogeneous distributions of the cooperation-competition gain. Such an empirical observation can be well explained by an analytic model in which the evolution of the systems are mainly controlled by the Matthew effect, and the marginal heterogeneity of the initial distribution is amplified by the Matthew effect with similar speed in spite of the diversity of the investigated systems.
Heavy-tailed distributions of meme popularity occur naturally in a model of meme diffusion on social networks. Competition between multiple memes for the limited resource of user attention is identified as the mechanism that poises the system at criticality. The popularity growth of each meme is described by a critical branching process, and asymptotic analysis predicts power-law distributions of popularity with very heavy tails (exponent $alpha<2$, unlike preferential-attachment models), similar to those seen in empirical data.
In this short note we present a new approach to non-classical correlations that is based on the compression rates for bit strings generated by Alice and Bob. We use normalised compression distance introduced by Cilibrasi and Vitanyi to derive information-theoretic inequalities that must be obeyed by classically correlated bit strings and that are violated by PR-boxes. We speculate about a violation of our inequalities by quantum mechanical correlations.
187 - R. A. Blythe 2011
We review the task of aligning simple models for language dynamics with relevant empirical data, motivated by the fact that this is rarely attempted in practice despite an abundance of abstract models. We propose that one way to meet this challenge is through the careful construction of null models. We argue in particular that rejection of a null model must have important consequences for theories about language dynamics if modelling is truly to be worthwhile. Our main claim is that the stochastic process of neutral evolution (also known as genetic drift or random copying) is a viable null model for language dynamics. We survey empirical evidence in favour and against neutral evolution as a mechanism behind historical language changes, highlighting the theoretical implications in each case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا