Do you want to publish a course? Click here

High-resolution ab initio three-dimensional X-ray diffraction microscopy

104   0   0.0 ( 0 )
 Added by Stefano Marchesini
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.



rate research

Read More

The Fourier inversion of phased coherent diffraction patterns offers images without the resolution and depth-of-focus limitations of lens-based tomographic systems. We report on our recent experimental images inverted using recent developments in phase retrieval algorithms, and summarize efforts that led to these accomplishments. These include ab-initio reconstruction of a two-dimensional test pattern, infinite depth of focus image of a thick object, and its high-resolution (~10 nm resolution) three-dimensional image. Developments on the structural imaging of low density aerogel samples are discussed.
X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is being practiced at several third-generation synchrotron-radiation x-ray facilities. Although only five years have elapsed since the technique was first introduced, it has made rapid progress in demonstrating high-resolution threedimensional imaging and promises few-nm resolution with much larger samples than can be imaged in the transmission electron microscope. Both life- and materials-science applications of XDM are intended, and it is expected that the principal limitation to resolution will be radiation damage for life science and the coherent power of available x-ray sources for material science. In this paper we address the question of the role of radiation damage. We use a statistical analysis based on the so-called dose fractionation theorem of Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience sample by XDM with a given resolution. We conclude that the needed dose scales with the inverse fourth power of the resolution and present experimental evidence to support this finding. To determine the maximum tolerable dose we have assembled a number of data taken from the literature plus some measurements of our own which cover ranges of resolution that are not well covered by reports in the literature. The tentative conclusion of this study is that XDM should be able to image frozen-hydrated protein samples at a resolution of about 10 nm with Rose-criterion image quality.
We performed high-pressure angle dispersive x-ray diffraction measurements on Fe5Si3 and Ni2Si up to 75 GPa. Both materials were synthesized in bulk quantities via a solid-state reaction. In the pressure range covered by the experiments, no evidence of the occurrence of phase transitions was observed. On top of that, Fe5Si3 was found to compress isotropically, whereas an anisotropic compression was observed in Ni2Si. The linear incompressibility of Ni2Si along the c-axis is similar in magnitude to the linear incompressibility of diamond. This fact is related to the higher valence-electron charge density of Ni2Si along the c-axis. The observed anisotropic compression of Ni2Si is also related to the layered structure of Ni2Si where hexagonal layers of Ni2+ cations alternate with graphite-like layers formed by (NiSi)2- entities. The experimental results are supported by ab initio total-energy calculations carried out using density functional theory and the pseudopotential method. For Fe5Si3, the calculations also predicted a phase transition at 283 GPa from the hexagonal P63/mcm phase to the cubic structure adopted by Fe and Si in the garnet Fe5Si3O12. The room-temperature equations of state for Fe5Si3 and Ni2Si are also reported and a possible correlation between the bulk modulus of iron silicides and the coordination number of their minority element is discussed. Finally, we report novel descriptions of these structures, in particular of the predicted high-pressure phase of Fe5Si3 (the cation subarray in the garnet Fe5Si3O12), which can be derived from spinel Fe2SiO4 (Fe6Si3O12).
Structural evolution of a prospective hydrogen storage material, ammonia borane NH3BH3, has been studied at high pressures up to 12 GPa and at low temperatures by synchrotron powder diffraction. At 293 K and above 1.1 GPa a disordered I4mm structure reversibly transforms into a new ordered phase. Its Cmc21 structure was solved from the diffraction data, the positions of N and B atoms and the orientation of NH3 and BH3 groups were finally assigned with the help of density functional theory calculations. Group-theoretical analysis identifies a single two-component order parameter, combining ordering and atomic displacement mechanisms, which link an orientationally disordered parent phase I4mm with ordered distorted Cmc21, Pmn21 and P21 structures. We propose a generic phase diagram for NH3BH3, mapping three experimentally found and one predicted (P21) phases as a function of temperature and pressure, along with the evolution of the corresponding structural distortions. Ammonia borane belongs to the class of improper ferroelastics and we show that both temperature- and pressure-induced phase transitions can be driven to be of the second order. The role of N-H...H-B dihydrogen bonds and other intermolecular interactions in the stability of NH3BH3 polymorphs is examined.
Energy-dispersive X-ray diffraction (EDXRD) is extremely insensitive to sample morphology when implemented in a back-reflection geometry. The capabilities of this non-invasive technique for cultural heritage applications have been explored at high resolution at the Diamond Light Source synchrotron. The results of the XRD analysis of the pigments in 40 paints, commonly used by 20th century artists, are reported here. It was found that synthetic organic pigments yielded weak diffraction patterns at best, and it was not possible to unambiguously identify any of these pigments. In contrast, the majority of the paints containing inorganic pigments yielded good diffraction patterns amenable to crystallographic analysis. The high resolution of the technique enables the extraction of a range of detailed information: phase identification (including solid solutions), highly accurate unit cell parameters, phase quantification, crystallite size and strain parameters and preferred orientation parameters. The implications of these results for application to real paintings are discussed, along with the possibility to transfer the technique away from the synchrotron and into the laboratory and museum through the use of state-of-the-art microcalorimeter detectors. The results presented demonstrate the exciting potential of the technique for art history and authentication studies, based on the non-invasive acquisition of very high quality crystallographic data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا